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Summary. It is considered variants of turn of the image on a
surface which is referred to an isometric web. The analytical model of
turn of the web on surfaces, and also image turn in relation to a web is
created. Examples of images on a surface of an orb before turn and
after turn are directed.
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Formulation of the problem. Orthogonal coordinate grid lines on the
surface, particularly on the plane, which divides it into small squares is
infinite, is called isometric. This particular case is a grid mesh Cartesian
coordinate system formed by the intersection of two families of coordinate
straight lines. Isometric grid can be spatial, ie, the surface can be attributed
to isometric coordinates. However, not all surfaces can be so described. In
[1] the construction of surfaces of revolution referred to isometric grid
coordinate lines. Based on mathematical correspondence between isometric
grid cells on the surface and the Cartesian plane can be conformally flat
display surface image [2]. In the article the ability to rotate the image on
the surface.

Analysis of recent research.. In work [2] shows the transition from a
rectangular grid polar coordinate system to the appropriate isometric grid.
Showing straight lines and curves in this isometric grid and construction of
these patterns are considered in the work [4]. Conformal mappings of plane
figures (inscriptions) on isometric spatial mesh cone and balls shown at
work [2].

Formulation of Article purposes. Develop analytical model rotate the
image on the surface, referred to isometric grid coordinate lines.

Main part. Flat Cartesian coordinate system is isometric. Its
parametric equations are of the form:

X =u;
Y =v, ()

where u, v — independent variables.
First fundamental form of isothermal mesh characterized in that it

includes a component du®+dv?, which can be multiplied by a certain
factor dependent variables u and v. For the grid (1) this ratio is unity, ie the
first fundamental form looks dS® = du® +adv’,



If dependent variables u and v link together through a third variable,
for example, t, then two equations u=u(t) i v=v(t), called internal line to
describe an isometric grid. For example, ask the internal equation in the
form:

u=at+u; v=Dbsint+v,, (2)
where g, b — constant, which influence the sinewave;

Uo, Vo — constant, which influence on location of sinewave.

When substituting (2) in (1) we get sine wave (Fig. 1,a).
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Fig.1. Flat Cartesian coordinate system with a sine wave, attributed to the

isometric grid: a) without rotation; b) at an angle of turn «.

Cartesian grid will return to the isometric angle «. We use well-
known formula of rotation, which u-lines and v- line will be returned to the
angle a. After this turn Cartesian isometric grid (1) written:

X =ucosa—vsing;

vV —usi 3)
=usina +Vvcosa.

When substituted internal sine wave equation (Equation second grid
(3) we get the image shown in Fig. 1b, ie isometric grid and built against
her will be returned to the sine wave angle . With =0 Equation (3) are
transformed into the equation (1).

Consider the isometric grid on the surface of a sphere of radius. Its
parametric equation in this case, the first fundamental form and have the
form [2]:

X =sechucosv;

Y =sechusinv; ds? =sech2u(du2 - dvz). )
Z =tanhu;

Constituents let's turn coordinate lines u and v at angle « on formulas
(3). In this case, the equation balls (4) and its first fundamental form shall
Appearance:



X =sech(ucosa —vsin a)cos(usin o +vcosa);

Y =sech(ucosa —vsin a)sin (usin « +vcosa); ()
Z = tanh (ucosa —vsin ).
dS? =sech?(ucosa — vsina )du?® +dv?). (6)

With =0 Equation (5) and the first fundamental form (6) are
converted into the corresponding expression given in (4). When substituted
internal sine wave equations (2) bullet equation (4) we get conformal
mapping sine wave on the surface of the ball (Fig. 2a). Fig. 2, b built to
display sine wave (2) on the surface of the ball (5) in «=15°.
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Fig. 2. isometric grid balls (5) of referred to it sinusoid (2):
a) without rotation (a=0); 0) with rotation by a=n/24.

As shown in Fig. 2, would net when turning at an angle « deformed:
its coordinate line, were flat parallels and meridians are transformed in the
space. But it remains an isometric grid, as evidenced by the first
fundamental form (6).

In addition to turning the grid relative to the surface, you can rotate
the image itself towards the net. We write the internal sine wave equation
(2) to turn it into an angle p:

u = (at +u, )cos B — (bsint + v, )sin ;
v = (at +u, )sin B + (bsint + v, )cos 3. (7)

If the internal sine wave equation (7) into the equation nets (4) or (5),
it will be turned towards her at an angle B. Sketch. 3 built spherical

isometric grid equations (5) at & = 0, i.e. no rotation, and marked sinusoid
(7) with a different angle .



Fig. 3 Isometric grid balls (5) at o = 0 with the image on it
sinusoid(7):
a) p=n/3; b) p=n/2.
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Fig. 4. isometric grid balls (5) at a=n/24 with the image on it
sinusoid(7):
a) f=n/3; b) p=n/2.

Fig. 4 made a double turn: net turned at an angle a=n/24 and sine
wave at different angles relative to mesh.

Consider a spherical isometric grid, which turns flat Cartesian grid

using inversion. Its parametric equations before and after the turn angle «
to be written:

X = u _ X _ucosa-vsina
u?+v2+1’° u+v2+1
v using +Vvcosa
Y = Y = 2,2 ) 8
u+v2+1 u?+v23+1 (8)
1 1
Z = 2 2 . Z= 2 2 .
u +v-+1 us+v-+1



First fundamental form surfaces (8) does not depend on the angle of
rotation « and has the form:

ds? - du? + dv®

(u2 +V o+ 1)2 ' ®)

Independence isometric grid (8) on the angle o means that does not

deform when rotated at a given angle «: when you turn it slides on the balls

around its vertical axis without deformation. So when you turn the grid

does not make sense to use angle «, and image rotation can be achieved

through the internal angle g his equations. Fig. 5 built sinusoid (7) with
different angles of rotation p relative to the grid (8).
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Fig. 5. Isometric grid balls (8) showing her sinusoids (7) of varying
amplitude and pitch:
a) f=n/3; b) f=0 1 p=n/2.

Rotate isometric grid, and lines with respect to the grid can be used
to rotate the image on the surface, which consists of a combination of
individual lines. For example, you can put on the ball of fish image formed
by conjugated arcs of circles, the location and size are known [5]:
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Fig. 6. Images of fish on the surface of the world:
a) ball grid attributed to isothermal (4);
b) attributed to ball grid isothermal (8).

Fig. 6 built on the surface fish balls, attributed to various isometric
grids. Image wondered Each position on the grid angle relative thereto and
scale factor which sets the image size.

Conclusions. The surface of the balls can be attributed to various
isometric grids. The mesh can be rotated on the surface at a specific angle.
There grid, which in turn then deformed, being isometric. Other grid at turn
not deformed. Analytical they can be distinguished by the first fundamental
form of the surface: in the first case it includes the angle of rotation, and
the second - is not included. In both types of nets can be conformally flat
image display, and they too can be rotated at a given angle on the surface
of the ball but did not have respect to the surface and into the net.

Literature

1. Hecsioomin B.M. KoHCTpytoBaHHS TOBEPXOHb OOEPTAaHHS, BITHECEHUX
JI0 130METPUYHHX CITOK KoopauHaTHuX JiHiH / B.M. HecBimomiH,
T.C. Kpemenp // MixkBiioMunii HayKOBO-TeXHIUHUN 30ipHUK. Bumyck
89 «Ilpuxmanna reomerpis Ta iHxeHepHa rpadikay.— KuiB: KHYBA,
2012.— C.271-276.

2. Kpemeyv T.C. KondopmHe BimoOpaKeHHS HAIHUCIB Ha 130METpUYHI
citku koHyca Ta Kyini / T.C. Kpemenp // TexHiuna ecteTuka i 1u3aiH. —
K.: Binmom, 2011. — Bun. 9. - C. 112 - 117.

3. Hecsioomin B.M. BinoOpakeHHsI HANIMCIB HA TIJIOCKI 130TEPMIYHI CITKH
/' B.M. HecBigomin, T.C. Kpemensr // IlpuknagHa reomerpis Ta
1HKEHEpHA rpadika. [pami TaBpiiicbkoro JEp>KaBHOTO
arpoTeXHOJIOTIYHOTO yHiBepcuTeTy. — Bum. 4, T. 48. — Menitonois:
THATY, 2010. - C. 15 —-21.



4. Hecsioomin B.M. BinoOpaxxeHHS NpAMUX 1 KPUBUX JIHINA Ha IUIOCKY
130METPUYHY CITKY MOJISIPHOI CUCTEMH KOOPAMWHAT Ta KOHCTPYIOBAHHS
i3 Hux BizepyHkiB / B.M. HecBimomin, T.C. Kpemerns // MixBigomumnii
HayKoOBO-TexHIuHMI 30ipHUK. Bumyck 87 «llpukinanna reomerpis Ta
imxeHepHa rpadika».— Kuis: KHYBA, 2011.— C.285-290.

5. Hecsioomin B.M. TlepeTBOpeHHsI IUIOCKMX 300paKE€Hb NUISIXOM
HaHECeHHs iX Ha pi3Hi 13omeTpuyHi citku / B.M. Hecigomin, T.C.
[Munmunaka, T.C. Kpemens // IlpuknagHa reomeTpis Ta iH)XKEHEpHA
rpadika. [lIpami TaBpilicbKOTO AEpXKABHOTO arpOTEXHOJIOTTYHOTO
yHiBepcutety. — Bun. 4, T. 56. — Memironons: TAATY, 2013. —
C. 158 - 163.



