DETERMINING THE AREA OF THE SEGMENT BOUNDED BY ARC CURVE

V. Vereschaga, A. Pavlenko ${ }^{*}$, A. Churakov, A. Lebedko

Summary. Suggested by means of a point-BN calculus solution of finding the square segment bounded by the arc of the curve, provided that the two points which form simplex located on this curve.

Keywords: BN- calculus, area of segment, continuous point curve.
Formulation of the problem. In-process [1] the calculation of area was first shown, by a limit flat reserved curve that is set by point equalization [2, 3]. Thus, a simplex at that a top was outside the reserved curve was elected, and other two tops that determine a simplex were elected among points that are in a middle a curve. Interesting will be a decision of task of being of corresponding area, when two (except a top) points that determine a simplex will be located on a curve.

Analysis of the recent researches. In-process [1] and to the real article the task of being of area of the segment limited to the arc of curve is examined first in a point BN-calculus development of that Melitopol school of the applied geometry engages in.

The wording of the purposes of the article. To work out a method for being of area of the segment, limited to the arc of the flat curve, set by point equalization in a simplex, a top of that is out of limits of curve, and two other points that determine a simplex - on her.

Main part. Let, in some global simplex, (fig.1) certain point equalization (1) curve of M .

Elect the local simplex of CAB, a top of what C is out of limits of curve of M and elected arbitrarily, and two other A and B - on the curve of M . Let point equalization of this curve be:

$$
\begin{equation*}
M=(A-C) p+(B-C) q+C, \tag{1}
\end{equation*}
$$

where p i q - parameters that show a soba in an obvious or non-obvious form simple relation of three points and determine the form of curve.

For determination of points A and B But also In , that belong to the curve of M, it is necessary in relation to these points to untie the system of two equalizations (2):

$$
\left\{\begin{array}{l}
M_{A}=A p_{A}-C p_{A}+B q_{A}-C q_{A}+C \tag{2}\\
M_{B}=A p_{B}-C p_{B}+B q_{B}-C q_{B}+C .
\end{array}\right.
$$

[^0]

Fig. 1. A scheme is for determination of area between the segment of $A B$ and arc of $A B$ of curve of M.

From where it is possible to write down:

$$
\begin{equation*}
A=B \frac{q_{A}}{p_{A}}+\frac{1}{p_{A}}\left(M_{A}-C\left(1-p_{A}-q_{A}\right)\right), \tag{3}
\end{equation*}
$$

if to accept $a=M_{A}-C\left(1-p_{A}-q_{A}\right)$, then equalization (3) will look like :

$$
\begin{equation*}
A=B \frac{q_{A}}{p_{A}}+\frac{1}{p_{A}} a . \tag{4}
\end{equation*}
$$

Taking into account (4), it is possible to write down

$$
M_{B}=B \frac{q_{A} p_{B}}{p_{A}}+\frac{p_{B}}{p_{A}} a+B q_{B}+C\left(1-p_{B}-q_{B}\right) .
$$

If to enter denotation: $b=\frac{q_{A} p_{B}}{p_{A}}+q_{B} \quad$ and $c=M_{B}-a \frac{p_{B}}{p_{A}}-C\left(1-p_{B}-q_{B}\right)$, then will define:

$$
\begin{equation*}
B=\frac{c}{b}=b_{B} . \tag{5}
\end{equation*}
$$

Taking into account (5), let us write (4):

$$
\begin{equation*}
A=a_{A}=\frac{1}{p_{A}}\left(b_{\boldsymbol{B}} q_{A}+a\right) . \tag{6}
\end{equation*}
$$

With taking (5) into account and (6) point equalization (1) will get a kind:

$$
\begin{equation*}
M=\left(a_{A}-C\right) p+\left(b_{B}-C\right) q+C . \tag{7}
\end{equation*}
$$

Elect on a curve from (7) two arbitrary points M_{i} and M_{i+1}. Will write down point equalizations for these points that determine their coordinates :

$$
\begin{equation*}
M_{i}=\left(a_{A}-C\right) p_{i}+\left(b_{B}-C\right) q_{i}+C \text {, where } p_{i}=p\left(t_{i}\right) ; q_{i}=q\left(t_{i}\right) ; \tag{8}
\end{equation*}
$$

$$
\begin{gather*}
M_{i+1}=\left(a_{A}-C\right) p_{i+1}+\left(b_{B}-C\right) q_{i+1}+C, \text { where } p_{i+1}=p\left(t_{i+1}\right) \\
q_{i+1}=q\left(t_{i+1}\right) \tag{9}
\end{gather*}
$$

Will define a point R_{i} from the simple relation of three points $M_{i} C R_{i}:$

$$
\begin{equation*}
M_{i} C R_{i}=r_{i} ; \rightarrow \frac{M_{i}-R_{i}}{C-R_{i}}=r_{i} ; R_{i}=\frac{M_{i}-C r_{i}}{1-r_{i}}, \text { where } r_{i}=1-p_{i}-q_{i} \tag{10}
\end{equation*}
$$

Putting in (10) point equalization (8), will get a point R_{i} :

$$
\begin{equation*}
R_{i}=\left(a_{A}-C\right) \frac{p_{i}}{p_{i}+q_{i}}+\left(b_{B}-C\right) \frac{q_{i}}{p_{i}+q_{i}}+C . \tag{11}
\end{equation*}
$$

By an analogical method, will define a point R_{i+1} from the simple relation of three points in a point form:

$$
\begin{equation*}
R_{i+1}=\frac{M_{i+1}-C r_{i+1}}{1-r_{i+1}} \tag{12}
\end{equation*}
$$

will find a point R_{i+1} from point equalization:

$$
\begin{equation*}
R_{i+1}=\left(a_{A}-C\right) \frac{p_{i+1}}{p_{i+1}+q_{i+1}}+\left(b_{B}-C\right) \frac{q_{i+1}}{p_{i+1}+q_{i+1}}+C \tag{13}
\end{equation*}
$$

The area of the sought after quadrangle $S\left(M_{i} R_{i} R_{i+1} M_{i+1}\right)$ (fig.1) equals the sum of areas of two triangles $S\left(M_{i} R_{i} M_{i+1}\right)$ and $S\left(M_{i+1} R_{i} R_{i+1}\right)$, id est

$$
S_{i, i+1}=\frac{a b \sin \gamma}{2\left(p_{i}+q_{i}\right)}\left(\left.\begin{array}{ccc}
p_{i} & q_{i} & 1 \tag{14}\\
p_{i} & q_{i} & p_{i}+q_{i} \\
p_{i+1} & q_{i+1} & 1
\end{array}\left|+\frac{1}{p_{i+1}+q_{i+1}}\right| \begin{array}{ccc}
p_{i+1} & q_{i+1} & 1 \\
p_{i} & q_{i} & p_{i}+q_{i} \\
p_{i+1} & q_{i+1} & p_{i+1}+q_{i+1}
\end{array} \right\rvert\,\right) .
$$

If to accept, that $\Delta_{i, i+1}=p_{i} q_{i+1}-p_{i+1} q_{i}$, then will get a formula for the calculation of area of quadrangle (fig.1):

$$
\begin{equation*}
S_{i, i+1}=\frac{a b \sin \gamma}{2}\left(\frac{r_{i+1}-r_{i}\left(p_{i+1}+q_{i+1}\right)}{\left(p_{i}+q_{i}\right)\left(p_{i+1}+q_{i+1}\right)} \Delta_{i, i+1},\right. \tag{15}
\end{equation*}
$$

where $r_{i}=1-p_{i}-q_{i}$, a $r_{i+1}=1-p_{i+1}-q_{i+1}$.
Conclusions. Many tasks of the applied character get untied through the use of the areas limited to the arc of the crooked line, a that is why offer here method has the special value. It is necessary to notice that than less step between i and $\mathrm{i}+1$ points, the area of triangle will be certain more precisely.

Literature

1. Верешага B.M. Визначення площі, обмеженої топографічною замкненою плоскою кривою /В.М. Верещага, Є.В. Конопацький,
О.M. Павленко // Науковий журнал: комп’ютерно-інтегровані технології: освіта, наука, виробництво. - 2015 (подано до друку)
2. Найдыш B.М. Алгебра БН-исчисления /В.М. Найдыш, И.Г. Балюба, В.М. Верещага // Прикладна геометрія та інженерна графіка. Міжвідомчий науково-технічний збірник. Вип. 90. - К. КНУБА, 2012. - С. 210-215.
3. Балюба И.Г. Конструктивная геометрия многообразий в точечном исчислении: дис....докт.техн.наук: 05.01.01 / Иван Григорьевич Балюба - Макеевка: МИСИ, 1995. - 227c.

[^0]: *Supervisor - Professor V.M. Vereschaga

