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Summary. On the basis of the Clairaut’s theorem we received 

new dependencies to build geodesic lines on the surface of rotation. 

The independent variable is the arc length of these lines. The 

authenticity of the results is checked on the cone. To construct of the 

geodesics in different directions conical reamer was used, in which 

these lines are straight. 
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Formulation of the problem. Search geodesic lines on the surface of 

the whole is reduced to drafting of the second-order differential equations, 

for integration to which you need to apply numerical methods. Only certain 

surfaces (surfaces of surface Liouville rotation) the order differential 

equation can be reduced to the first and expressions reduced to integration 

[1], which rarely again can be integrated. For surfaces of revolution 

following expression for integrating expression is based on Clairaut 

theorem, which establishes the relationship between the inner surface 

coordinates in the form v = v (u), where v - angle point of the geodesic line 

around the axis of rotation of the surface. However, in this case the 

geodetic line full build is not always possible, as when changing parameter 

u, which is independent of the construction of the geodesic line, gradually 

covered the entire surface, for example, from top to bottom. But in the 

lower or upper surface of the geodesic line is given no direction, it touches 

at a certain point to some parallels and returns to the opposite side. The 

independent variable u cannot at some point start to decline, it only 

increases monotonically. Thus, according the Clairaut theorem can be built 

only fragments of geodesic lines. 

Analysis of recent research. If the surface of the rotation to produce 

composite materials, reinforced threads, the thread should be reeled along 

these geodesic lines [2,3]. In addition, during the construction of some 

working bodies (including tillage), take into account the location of the 

geodesic lines on the surface, because the particles of the process material 

at forced their movement on working body trying to move along these lines 

close to surveying, especially at high speeds of movement [4 5]. Given the 
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practical importance of geodesic lines, their location and construction was 

studied by different researchers [6,7]. 

The wording of the purposes of the article. Write a differential 

equation of geodesic lines in length function of their own arc for surfaces 

of rotation. 

Main part. If the rotation surface is established by parametric 

equations in the form:  

,;sin;cos   ZvYvX   (1) 

where φ=φ(u); ψ=ψ(u) – parametric equation of meridian, according 

Clairaut theorem the internal equation of geodesic line is in the form v = v 

(u) is described the integral: 
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where c- constant, which determines the direction of the geodesic 

line to a specific point in the set values of internal coordinates u  and  v. 

Expression (2) is connecting the inner surface coordinate with 

dependence v = v (u). However, the relationship between internal 

coordinates can be set differently - with a new independent variable - 

length of the arc of the geodesic line, ie in the form v=v (s) and u = u (s). 

After differentiating expression (2) becomes: 
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Since v = v (s) and p = u (s), you can record
u
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Substituting the obtained expression in (3), we obtain: 
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It is understood that the expression (4) v 'and u' are derived in the 

variable s, and φ 'and ψ' - the variable u, what that variable is used in the 

lower index. The differential equation (4) cannot be used because it 

includes two unknown functions: v = v (s) and u = u (s). So for them of the 

need to have another equation. These equations can know identities for the 

curve, which is given in arc length function s: 1222  zyx . Let's find 

the first derivatives of equations (1) with help of the variable s (with capital 

letters in equations (1) to replace small letters because in the first case the 

equation describing the surface, and the second - line on it): 
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After substituting in the above identities of derivatives (5) we get: 
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Let's solve (6) due to u'': 
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Now we have two equations (4) and (7) with two unknown functions. 

Substituting (7) (4) and after simplification we will obtain a simple 

relationship: 
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After substituting (8) into (7) we have: 
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After separation of variables in (9) we finally obtain: 
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By the integral (10) are expressions that define meridian, and their 

derivatives, which are variable functions u. If it can integrate, we get 

dependency s=s(u). The next step - from the resulting inverse dependence 

found u=u(s). You must dependency u=u(s) substitute the function φ(u), 

then get φ(s). And the last stage - the dependence of the v=v(s) the formula 

(8), which also can be written as an integral: 
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 Expressions rarely integrate. They can be used to build geodesic 

lines numerical methods. Analytical expressions in the final form can be 

obtained only for the simplest surfaces of revolution. 

 Consider the following example. Take cone meridian parametric 

equations which are as follows [8]:  

    tg; coscos uu ee  ,   (12) 

where β – angle rectilinear generators of the cone to the base. 

 We write the original equation (12): 

    sin;cos coscos u

u
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 Substitute (12) (13) (10) and get: 
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Where с1 – constant of integration. 



 Solves (14) with respect to u (where с1=0): 
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 Substitute (15) in the first expression (12) and obtain dependence 

φ(s):  222 cossc  . According to the formula (11) we find the 

dependence v=v(s): 
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 Equation (15), (16) are internal equation of geodesic lines on the 

cone, the direction of which depends on sustainable с. To check the 

reliability of the results, we use the known formula (2): 
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 If (1) substitute meridian equation (12) and dependence v=v(u) with 

(17), we obtain the parametric equations of the geodesic line. Its length s 

can be found in well-known formula integrating the square root of the sum 

of squares of derivatives parametric equations. In general terms, at v=v(u) 

This formula takes the form: 

   duvs uuu  2222  .    (18) 

If (18) to substitute the expression (12), (13) and the derivative v 

'from (17) (integrand expression), we get the exact same integral as (14). 

This suggests that the formula (10), (11) are correct. 

When the requirement that all geodetic line went from one point in 

different directions depending on the constant с at s=0, find the constant of 

integration in с1 (14) for a given initial coordinate u0 on the surface of the 

cone: 
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Then the expression (15) becomes quite cumbersome form: 
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Analyzing the expression (20), we can conclude that the internal 

expression basal is found on sustainable difference. This means that the 

constant c restricted, that in not every direction you can build a geodesic 

line. 

Thus, the construction of geodesic lines on the dependence based on 

Clairaut theorem cannot be implemented in full. However, this obstacle can 

be overcome for evolvent surfaces, of parametric equation is known. 

Geodesic lines on the evolvent converted to straight. So, we can build in 



inverse order to the direct beam, which on the surface are converted to 

geodesic lines emanating from a given point in different directions. 

Consider this cone example. 

Parametric equations cone evolvent   with the meridian of the form 

(12) are as follows: 
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If you find the first evolvent quadratic form (21) and cone (1) with 

the meridian (12), you can make sure they are the same. Sketch. 1, and the 

equations (21) built in the involute cone β=45
0
. Let point A with 

coordinates х0 and y0 need to draw a straight line, which will be a geodesic 

on the cone. Consider this point in the coordinate system OXY separately 

(Fig. 1b). 
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Fig.1. Before the definition of point A on cone evolvent , because we 

need  to draw a straight line with a given direction: 

a) point A on the evolvent with given coordinates х0=5 and y0=5; 

b) determining the coordinates х0 and y0 through distance ρ and angle 

α0 and direction of the straight line s through the angle α. 

 

Parametric equation of the line s (and s - is the length of the line - 

independent variable) is written: 

  sin;cos 00 syysxx  ,  (22) 

where α - the angle which sets the direction of the line. 

Taking into account that 0000 sin;cos   yx line equation 

(22) is written: 

  sinsin;coscos 00 sysx  .   (23) 

To build straight (23) on the evolvent cone (21), needs to find its 

internal equation in the form v = v (s) and u = u (s). For this among 

themselves liken corresponding coordinates of equations (21) and (23): 



 

 

 .cossin
cos

sinsin

;coscos
cos

coscos

cos

0

cos

0















v
e

s

v
e

s

u

u





   (24) 

Solve the system of equations (24) in connection with v and u: 
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When substituting expressions (25) for given values of constants β ρ, 

α0, α evolvent in equation (21) we obtain the corresponding straight line 

towards the curvilinear coordinates of the evolvent. At the same 

substitution of internal equations parametric equations, we obtain the 

appropriate geodesic lines of cone on its surface. 

In constructing straight lines on the cone evolvent with a different 

angle α and s during the change from zero to a given value, end segments 

will lie on the circle. If in the expression (25) we make the angle α the 

second independent variable, then substituted in (21) we get a second 

orthogonal grid, one family of coordinate lines, which are straight, and the 

second - concentric circles (Fig. 2a). On the surface of the cone straits 

directly convert to geodetic line, and the circle - in the curves of constant 

geodesic curvature. This follows from the fact that the geodesic curvature 

of the curve does not change when bent surface and becomes a full 

evolvent on curvature, that is, in the curvature circles for our case. Such a 

system of coordinates on the surface is called half-developable [1]. Curves 

family of constant geodesic curvature (in our case - the family of 

concentric circles) called Darboux circles. In general, they can be unlocked 

(eg screw line on the surface evolvent helicoid). 

  When ρ = 0 in equations (25) are bunch of straight geodetics of 

cone generating and circles Darboux - its parallels. 

Conclusions. The obtained integrals (10) and (11) are a modification 

of Clairaut theorem for finding the geodesic lines on the surfaces in 

rotation length function of the of the arc according to their own known 

equations of meridian. They can build a bunch of geodesic lines from a 

given point on the surface in different directions with the same length. 

Because of the specific integrals the construction of lines in some areas can 

be more difficult. This obstacle can be overcome for the evolvent surface if 

known parametric equation of  evolvent. For this inverted order is cluster of 

straight lines and concentric circles scan, which is corresponded a bunch of 

geodesic lines and circles on the surface of  Darboux. 
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Fig.2. Cone bunch of geodesic lines and Darboux circles on it: 

a) evolvent cone; b) cone in axonometry. 
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