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RELATIVE MOTION OF THE CORPUSCLE ALONG THE
RECTILINEAR VANE ON THE CENTRIFUGAL MEANS

A. Chepyzhniy, V. Nesvidomin, I. Griscenko

The law of relative movement of a particle along a rectilinear vane
on the centripetal device is discovered. The problem is solved by means of
use of two co-ordinate systems - mobile and motionless. It is made
parametric equations of an absolute mechanical trajectory of a corpuscle.
The solution in a final form is gained.
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Formulation of the problem. Investigation of the material particles
from the horizontal drive straight blades attached orthogonally in its
rotation around the vertical axis is the theoretical basis for the design of
centrifugal devices for spreading fertilizer. The movement of particles in
such devices is complex: it consists of a portable particle motion during
rotation of the disk and the relative motion along its blade. Consequently,
the complicated task of finding the particle kinematic parameters of this
motion.

Analysis of recent research and publications. The movement of
particles along a straight horizontal blades rotating disk around a vertical
axis sufficiently studied in the works [1-3]. The theory of the movement
based on the fact that the movement point studied simultaneously with
respect to two coordinate systems. One (main) taken as fixed, and the other
performs relative to a stationary relative motion given by law. In turn, in
the moving frame made relative motion of the particle. The sum of these
movements (relative and portable) is the absolute motion of a particle in
relation to the basic coordinate system. In work [4] by moving coordinate
system taken cover Frenet-Serret formulas trajectory portable motion.

Formulation of the article purposes. Find law relative movement of
particles along a rectilinear blade the example of horizontal centrifugal
machine drive.

Main part. Take two flat coordinates that match the initial moment:
Oxy fixed and mobile Ohrur. We assume that the mobile system is fixed
straight vertical blade that crosses the axis OCR at point A and tilted it at
an angle a (Fig. 1 a). By turning the moving system at an angle ¢ around a
common origin shovel will take a new position, with its point A describes
an arc of a circle of radius rO (Fig. 1b). If you set a constant angular
velocity ® rotation moving system with a spatula, then at time t, it returns



to the angle ¢: ¢ = wt. During the same period in particle by centrifugal
force moves along the blade from its initial position (fig. 1 a) new for some
distance u (fig. 1b). Dependence moving particles from the time u = u (t) in
relative motion is unknown function that we seek. The provisions of
particles moving frame written in projections on its axis through angle a:

X, =Ucosa—,; y, =using. (1)
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Fig. 1. Fixed Oxy and mobile Ox,y, coordinates with fixed straight
scoop AB in the moving:

a) both systems coincide at the beginning of the movement;

b) moving relative to the fixed system is turned at an angle p=wt

During t mobile system with paddle back towards fixed at an angle ¢
= ot. The known formulas turn can be written:

x = (ucosa—r, )cosat —usin asin at ;
y =(ucosa—r, )sin at +usinacosat. )

Given that the displacement of particles along the bladesu =u (t) is a
function of time t, parametric equation (2) describe the absolute trajectory
of a particle in a fixed coordinate system.

Projections absolute speed and absolute acceleration of particles on the axis
fixed coordinate system find consistent differentiation equations (2) at time
t. After differentiation (2) and grouping members get the absolute velocity
of projection:

X' =Uu’cosa + at) — uwsin(a + at) + r,osin at;

y' =u’sin(a + ot) + uwcos(a + at) — r,wcosat. ®)

After differentiating expressions (3) and simplifications obtain
absolute acceleration vector projection:



X" =u"cos(a + at) +
+a|r,wCcosat —uwcos(a + at)— 2u'sin(a + at));
y" =u"sin(a + at)+ (4)
+alr,@sin et —uwsin(a + at)+ 2u’ cos(a + at)).
After differentiating expressions (3) and simplifications obtain absolute
acceleration vector projection::
mx"=F,; my"=F,; mz"=F,, (5)
where m — particle mass;
X", y", 2" - absolute acceleration projection vector (4);

F., K, F - projection resultant forces applied to the particles on the
axis fixed coordinate system.

Along the axis Oz is no movement, so z'= 0, and is appended by
weight of the particles mg, where g = 9,81 m / s2, and the reaction Nz
horizontal disk that Fz = Nz-mg. So, from the last equation (5) we have: Nz
= mg. In horizontal disc attached to particles at point B is the friction force
FT directed in the opposite direction along the blade slipping particles (Fig.
1b) and the reaction force N with side blades directed perpendicular to it.
Friction FT includes two components: the horizontal friction disk fmg,
where f - coefficient of friction of the particles on the disk and fN - friction
on the blade. This meant that the material of the disc and blades identical,
ie f factor for them is common. Thus, friction is written: FT = f (mg + N).
Now we can write projections attached to the particle forces in the axis
coordinate system moving through the angle a (Fig. 1b):

F,, =—f(mg+ N)cosa - Nsina; .
Fy, =—f(mg+N)sina + Ncosa . (6)

As we make differential equations projected on the axis fixed
coordinate system, the projection of power (6) also need to turn at an angle
¢ = ot with floating system:

F, = f(mg+ N)cosa + Nsin a|cosat +
+{f(mg + N)cosa — N sin a]sin at;

F, =—[f(mg+ N)cosa + N sin & ]sin at — (7)
[ f(mg + N)cosa — Nsin a|cosat.

Substituting expressions of acceleration (4) and expression of applied
forces (7) in the first two equations (5) and obtain a system of two

differential equations with two unknown dependenciesu = u (tf) and R = R
(). Us solve its relatively u'and N and obtain:

U =Uw? — f(2u’a)+ g)+ roa)z(f sin O(—COSOZ);
N =ma(2u’ - r,wsina). ©)



Analyzing (8), we see that the first equation is independent. It can be
solved and get the dependence u = u (t). Below is a simplified solution with
o = 0, 1e radial blades installed:

fg (—f 1 Jat
U=—+TI,+Ce
@
where c,, C, — continuous integration.

Differentiation dependence (9) give expression sliding speed

particles along a rectilinear blade, and his substitution in the second
equation (8) gives the pressure dependence of N.
Equation (9) coincides exactly with the same equation in the work [2]
(equation (7.1.8) (7.1.9), p. 366), although they received at very different
approaches. In work [2] determined the direction of the Coriolis
acceleration rule Zhukovsky, which we are also present in projections on
the axes.

Bucnoexu. One of the ways for solving problems on dynamics of
particles in a complex movement is absolute parametric equations drafting
its trajectory, in which the unknown function adopted a law relative
movement. Consistent differentiation equations trajectory over time are
speed and acceleration. Next problem is solved on the basis of Newton's
second law.

(—f h/ﬁjwt
+C,e , (9)
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