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Summary. Suggested by means of a point-BN calculus solution of 

finding the square segment bounded by the arc of the curve, provided 

that the two points which form simplex located on this curve. 
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Formulation of the problem. In-process [1] the calculation of area 

was first shown, by a limit flat reserved curve that is set by point 

equalization [2, 3]. Thus, a simplex at that a top was outside the reserved 

curve was elected, and other two tops that determine a simplex  were 

elected among points that are in a middle a curve. Interesting will be a 

decision of task of being of corresponding area, when two (except a top) 

points that determine a simplex will be located on a curve. 

Analysis of the recent researches. In-process [1] and to the real 

article the task of being of area of the segment limited to the arc of curve is 

examined first in a point BN-calculus development of that Melitopol school 

of the applied geometry engages in. 

The wording of the purposes of the article. To work out a method for 

being of area of the segment, limited to the arc of the flat curve, set by 

point equalization in a simplex, a top of that is out of limits of curve, and 

two other points that determine a simplex - on her.  

Main part. Let, in some global simplex, (fig.1) certain point 

equalization (1) curve of М.  

Elect the local simplex of САВ, a top of what С is out of limits of 

curve of M and elected arbitrarily, and two other А and В  - on the curve of 

М. Let point equalization of this curve be: 

M = (A – С) p +(B – С)q+C,    (1) 

where  p і q – parameters that show a soba in an obvious or non-obvious 

form simple relation of three points and determine the form of curve. 

For determination of points А and В But also In, that belong to the 

curve of M, it is necessary in relation to these points to untie the system of 

two equalizations (2): 
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Fig. 1. A scheme is for determination of area 

between the segment of AB and arc of АВ of curve of М. 

 

From where it is possible to write down: 
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if to accept  ),qp1(CMa AAA   then equalization (3) will look like : 
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Taking into account (4), it is possible to write down 
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If to enter denotation:  
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Taking into account (5), let us write (4): 
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With taking (5) into account and (6) point equalization (1) will get a kind: 

Cq)Cb(p)Ca(M BA  .   (7) 

Elect on a curve from (7) two arbitrary points iM   and 1iM  . Will 

write down point equalizations for these points that determine their 

coordinates : 
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Will define a point iR   from the simple relation of three points 

iiCRM  : 
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Putting in (10) point equalization (8), will get a point  iR : 
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By an analogical method, will define a point 1iR    from the simple 

relation of three points in a point form: 
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will find a point 1iR    from point equalization: 
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The area of the sought after quadrangle  )MRRM(S 1i1iii    (fig.1) 

equals the sum of areas of two triangles )MRM(S 1iii   and 

)RRM(S 1ii1i  , id est 
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If to accept, that i1i1ii1i,i qpqp   , then will get a formula for 

the calculation of area of quadrangle (fig.1): 
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where iii qp1r  , а  1i1i1i qp1r   . 

Conclusions. Many tasks of the applied character get untied through 

the use of the areas limited to the arc of the crooked line, a that is why offer 

here method has the special value. It is necessary to notice that than less 

step between і and i+1 points, the area of triangle will be certain more 

precisely. 
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