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Summary. The geometric model for the study of oscillatory
phenomena in two-dimensional lattice on the basis of mathematical
pendulums of different mass with arbitrary initial and boundary
conditions is proposed. A program for the calculation and visualization
of vibrations of individual nodes is developed.
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Formulation of the problem. Nature of oscillatory phenomena is
studied quite well [4]. They accompany all mechanical constructions,
where there is a parts rotation of machines, engines, aircraft and ships, and
so on. Different parts of the mechanical system or the whole system can
come into resonance with forcing power. The phenomenon of resonance
can cause destruction of machines, buildings, bridges and other structures.
Therefore, the study of oscillatory processes in complex load conditions
has great practical interest.

Analysis of recent research. Analytical solutions of the vibrations of
many simple models are obtained: pendulum, case an harmonic
oscillations, vibrations with one and two degrees of freedom at presence of
friction or external forces and so on. Using numerical methods [1] allows
us to solve more complex problems with many degrees of freedom. In the
paper [2] mathematical model of oscillations in a two-dimensional system
with fixed limits is proposed. This work is its extension. It is dedicated to
the mechanical vibrations modeling of two-dimensional rectangular grid
with random initial and boundary conditions.

Formulation of article purposes. Development of a model for the
analysis of two-dimensional rectangular grid fluctuations at arbitrary initial
and boundary conditions.

Main part. Let us consider oscillating mechanical system, which is a

flat uniform rectangular grid {M; ;(ihy, jh,):i=0m+1,j= 0n+1}

(Figure 1). In grid nodes {M, ;(ihy, jh,):i=Lm, j="1n} are masses balls

{m; j:i=1m,j= 1n} Between each pair of points {Miy; M}, i=1..
m + 1, j =1 ..nis the connection (spring), which prevents deformation of



compression / tensile stiffness of; between each pair of points {M;;.. ,\Mij}, i =
1..m,j=1..n+1isaconnection (spring) with stiffness.
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Fig.1. Arrangement of balls in the two dimensional lattice

Limit grid point range Gr={M; ;:ie{O,m+1},j= 1Lnvi=1m,
J €{0,n+1}}with predetermined frequencies and amplitudes. During each
ball oscillation the force of friction is proportional to the speed of the ball,

that isF,,,; j =—uV, ;.

As coordinates and projection speed of each ball we assume {(j hy +
Xij(©),ih,+y,j@®):i=1.mj=1..m}{Va;®, vi;@®);i=1..m
J =1 ..n)} Initial rejection of all balls {(xi, ; (0) = Xi, jo, ¥i,j (0) = Vi, jO): 1 =
1..m,j=1..n)} and their initial velocity {(vx, ; (0) = Vi, jo, Wi j (0) =
=Vyi jo): 1 =1..m,j=1..n)} are known. It is necessary according to
given accuracy to get balls in each interval of time te[0; 7] laws shift
coordinates of the corresponding point of balance and speed, that is the

function {(Xi,j(t);yi,j (t),VXi,j (t),Vyi'j (t):i=1..m, j=I...n}.

We denote the forces acting on some balls (ij) of the links which
connect this ball with other balls (i-1, j), (i + 1, j), @i, J-1), (i, ] + 1)
according Fiij, Faij, Fsij, Faij. Their meaning:

1,0
Fli,j:kg (S( 10) _ 1 ) F2i,j I+1J(S(+ ) hg)’

0 -1
I:Si,j ( ) hv) I:4i,j i j+l(S(0 Y hv)’
where
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Si(,oj’ﬂ) - \/(Xi,j+l - Xi,j)2 +(Yisnj—Yij + hv)2

Instantaneous length corresponding relations (Pythagoras theorem
for triangles in Mi-lelMijy Mi+1ngMij, Mij_ngMij, Mij+1G4Mij, Figure 1)
Projections of these forces on the coordinates OX and QY are equal.
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In addition, the dissipation power acts on each bead from the
environment (friction) which the projection axis coordinate the following:

Fmpxl i = HVyi i mpyl Vi i

Newton's second law of motion for ball can be written as:

ml jVXI i~ FlXI j + F2XI j + F3XI j + F4XI j + Fmpxl j

m; Vyi j = F1yl + Fzy, + F3yl + F4yl + Fmpﬂ i

where the point over the letter denotes the single dlfferentlatlon according
change of time.

Algorithm for solving systems of differential equations is considered
in the papers [1,3]. For the study oscillatory processes is established
program on the algorithmic language Delphi [4]. As an example we will
consider oscillatory process in the lattice of nodes 11x11. The calculations
assumed that if on the boundaries x = 0 and x = 10, there are forces of
sinusoidal nature, which amplitude equal to 0.1. The dependence of the
oscillation amplitude node in the fifth row and fifth column are shown in
Fig. 2 and 3.



Fig. 2. Dependence of the fluctuations node amplitude in the fifth row and
fifth column (oscillation frequency on the brink 0.2).

Fig. 2 shows that the nature node fluctuations differ from
harmonious - amplitude and frequency change over time, the amplitude in
some cases almost three times exceeds the amplitude, which was set on the
edge.

Numerous experiments have shown that oscillatory process in the
system to a great extent depends on the frequency. Fig. 3 shows the time
dependence of the amplitude of the same node with little change in
frequency from 0.2 to 0.25.

Fig. 3. The dependence of the oscillation amplitude node in the fifth row
and fifth column (oscillation frequency on the brink 0.25).

If the oscillation frequency, which is set on the edge, approaches the
natural frequency of the system, there are resonant phenomena - amplitude
in some nodes unlimited increases.

Conclusion. Geometric model is developed for the analysis of
relaxation phenomena during mechanical vibrations of two-dimensional



uniform rectangular grid of varying hardness and with different masses
concentrations in the grid at arbitrary initial and boundary conditions.
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