THE THEOREM OF CLAIRAUT FOR CONSTRUCTION OF
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Summary. On the basis of the Clairaut’s theorem we received
new dependencies to build geodesic lines on the surface of rotation.
The independent variable is the arc length of these lines. The
authenticity of the results is checked on the cone. To construct of the
geodesics in different directions conical reamer was used, in which
these lines are straight.
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Formulation of the problem. Search geodesic lines on the surface of
the whole is reduced to drafting of the second-order differential equations,
for integration to which you need to apply numerical methods. Only certain
surfaces (surfaces of surface Liouville rotation) the order differential
equation can be reduced to the first and expressions reduced to integration
[1], which rarely again can be integrated. For surfaces of revolution
following expression for integrating expression is based on Clairaut
theorem, which establishes the relationship between the inner surface
coordinates in the form v = v (u), where v - angle point of the geodesic line
around the axis of rotation of the surface. However, in this case the
geodetic line full build is not always possible, as when changing parameter
u, which is independent of the construction of the geodesic line, gradually
covered the entire surface, for example, from top to bottom. But in the
lower or upper surface of the geodesic line is given no direction, it touches
at a certain point to some parallels and returns to the opposite side. The
independent variable u cannot at some point start to decline, it only
increases monotonically. Thus, according the Clairaut theorem can be built
only fragments of geodesic lines.

Analysis of recent research. If the surface of the rotation to produce
composite materials, reinforced threads, the thread should be reeled along
these geodesic lines [2,3]. In addition, during the construction of some
working bodies (including tillage), take into account the location of the
geodesic lines on the surface, because the particles of the process material
at forced their movement on working body trying to move along these lines
close to surveying, especially at high speeds of movement [4 5]. Given the
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practical importance of geodesic lines, their location and construction was
studied by different researchers [6,7].

The wording of the purposes of the article. Write a differential
equation of geodesic lines in length function of their own arc for surfaces
of rotation.

Main part. If the rotation surface is established by parametric
equations in the form:

X =@Cosv; Y =psinv; =y, (1)
where ¢p=¢(u); y=w(u) — parametric equation of meridian, according
Clairaut theorem the internal equation of geodesic line is in the formv =v

(u) is described the integral:
V= cj \o” +y” du

2
oo’ - (2)
where c- constant, which determines the direction of the geodesic

line to a specific point in the set values of internal coordinates u and v.
Expression (2) is connecting the inner surface coordinate with
dependence v = v (u). However, the relationship between internal
coordinates can be set differently - with a new independent variable -
length of the arc of the geodesic line, ie in the form v=v (s) and u = u (s).

After differentiating expression (2) becomes:

dV C (012 +W!2
W\ e )

: dv_dv du v
Since v=v (s) and p = u (s), you can recorda—g. &

Substituting the obtained expression in (3), we obtain:

,_uc g4y
V =
0 ¢)2—C2 : 4)

It is understood that the expression (4) v 'and u' are derived in the
variable s, and ¢ 'and ' - the variable u, what that variable is used in the
lower index. The differential equation (4) cannot be used because it
includes two unknown functions: v =v (s) and u = u (s). So for them of the
need to have another equation. These equations can know identities for the
curve, which is given in arc length function s: x> +y? +z'* =1. Let's find
the first derivatives of equations (1) with help of the variable s (with capital
letters in equations (1) to replace small letters because in the first case the
equation describing the surface, and the second - line on it):

X'=U'g', cosv—V'gsiny;

y'=U'g', sinv+Vv'pcosy, (5)

'=u'y,.



After substituting in the above identities of derivatives (5) we get:

v’2¢2+u'2(¢;2+y/;2):1 ©)
Let's solve (6) due to u":

. 1_V'2(02
u'= |———
\ o +yl® ()

Now we have two equations (4) and (7) with two unknown functions.
Substituting (7) (4) and after simplification we will obtain a simple
relationship:

, dv ¢
V=—ruwu=—0
After substituting (8) into (7) we have:

u,_d_u_l ¢2_(.:2 9
ds o\el+y) " ®)

After separation of variables in (9) we finally obtain:

12 12
O Ty,
S:Iq) /—@2 — du (10)

By the integral (10) are expressions that define meridian, and their
derivatives, which are variable functions u. If it can integrate, we get
dependency s=s(u). The next step - from the resulting inverse dependence
found u=u(s). You must dependency u=u(s) substitute the function ¢(u),
then get ¢(s). And the last stage - the dependence of the v=v(s) the formula
(8), which also can be written as an integral:

V= (11)
P lu@s)l’

Expressions rarely integrate. They can be used to build geodesic
lines numerical methods. Analytical expressions in the final form can be
obtained only for the simplest surfaces of revolution.

Consider the following example. Take cone meridian parametric
equations which are as follows [8]:

(0 — eucosﬂ; l// — eucosﬁtgﬂ’ (12)
where f — angle rectilinear generators of the cone to the base.

We write the original equation (12):

@, =e"*" cos p; w! =e""’sing. (13)
Substitute (12) (13) (10) and get:
2ucosg

162ucos,6’ _CZ COSﬂ

Where ¢, — constant of integration.



Solves (14) with respect to u (where ¢;=0):
1
u=——Ilog,/c*+s*cos’
cos 3 g\/ p. (15)
Substitute (15) in the first expression (12) and obtain dependence

0(s): @=+/c?+s2cos? B. According to the formula (11) we find the
dependence v=v(s):
V:Cj s = arctg(
c’+s°cos’ 3 cosf
Equation (15), (16) are internal equation of geodesic lines on the
cone, the direction of which depends on sustainable ¢. To check the
reliability of the results, we use the known formula (2):

dU 1 /eZUCOSﬁ _C2
V= CI = arctgl —— |,
/62ucosﬂ _CZ COSﬂ c
If (1) substitute meridian equation (12) and dependence v=v(u) with
(17), we obtain the parametric equations of the geodesic line. Its length s
can be found in well-known formula integrating the square root of the sum

of squares of derivatives parametric equations. In general terms, at v=v(u)
This formula takes the form:

S= J\/gol'f +y!? + @V du, (18)

If (18) to substitute the expression (12), (13) and the derivative v

‘from (17) (integrand expression), we get the exact same integral as (14).
This suggests that the formula (10), (11) are correct.

When the requirement that all geodetic line went from one point in

different directions depending on the constant ¢ at s=0, find the constant of

integration in ¢; (14) for a given initial coordinate uy on the surface of the

cone:
1 Uy COS
C, =————e?% _¢? (19)

cos
Then the expression (15) becomes quite cumbersome form:

u=_1 log \/c2 +(scos,b’+\/e2“°°°sﬂ —cz)Z

cos

scos S
. j- (16)

7)

: (20)

Analyzing the expression (20), we can conclude that the internal
expression basal is found on sustainable difference. This means that the
constant c restricted, that in not every direction you can build a geodesic
line.

Thus, the construction of geodesic lines on the dependence based on
Clairaut theorem cannot be implemented in full. However, this obstacle can
be overcome for evolvent surfaces, of parametric equation is known.
Geodesic lines on the evolvent converted to straight. So, we can build in



inverse order to the direct beam, which on the surface are converted to
geodesic lines emanating from a given point in different directions.
Consider this cone example.

Parametric equations cone evolvent with the meridian of the form
(12) are as follows:

ucosp ucospg

. _ e H
X, = -~ cos(veos B) Y, = - sin(vcos A) . (21)

If you find the first evolvent quadratic form (21) and cone (1) with
the meridian (12), you can make sure they are the same. Sketch. 1, and the
equations (21) built in the involute cone A=45° Let point A with
coordinates xq and yo need to draw a straight line, which will be a geodesic
on the cone. Consider this point in the coordinate system OXY separately
(Fig. 1b).
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Fig.1. Before the definition of point A on cone evolvent , because we
need to draw a straight line with a given direction:
a) point A on the evolvent with given coordinates x,=5 and yy=5;
b) determining the coordinates xq and y, through distance p and angle
oo and direction of the straight line s through the angle o.

Parametric equation of the line s (and s - is the length of the line -
independent variable) is written:
X=X, +SCoSq; y=Y,+Sssine, (22)
where « - the angle which sets the direction of the line.
Taking into account that X, = pCosca,; Y, = psing,line equation
(22) is written:
X = pCoSa, +SCoSq; y=psing, +ssina. (23)
To build straight (23) on the evolvent cone (21), needs to find its

internal equation in the form v = v (s) and u = u (s). For this among
themselves liken corresponding coordinates of equations (21) and (23):



ucosg

pPCOSa, +SCOSax =

-y cos(v cos A),

eu cosp (24)

psina, +ssina = sin(v cos 3).

Solve the system of equations (24) in connection with v and u:

psina, +ssina |
arctg )
P COSax, +SCoS

(25)

u=——1In{cos 2 4+s%+2p5c08(ax — .
o Meos o757 2 meos(a =)

When substituting expressions (25) for given values of constants £ p,
ao, o evolvent in equation (21) we obtain the corresponding straight line
towards the curvilinear coordinates of the evolvent. At the same
substitution of internal equations parametric equations, we obtain the
appropriate geodesic lines of cone on its surface.

In constructing straight lines on the cone evolvent with a different
angle a and s during the change from zero to a given value, end segments
will lie on the circle. If in the expression (25) we make the angle a the
second independent variable, then substituted in (21) we get a second
orthogonal grid, one family of coordinate lines, which are straight, and the
second - concentric circles (Fig. 2a). On the surface of the cone straits
directly convert to geodetic line, and the circle - in the curves of constant
geodesic curvature. This follows from the fact that the geodesic curvature
of the curve does not change when bent surface and becomes a full
evolvent on curvature, that is, in the curvature circles for our case. Such a
system of coordinates on the surface is called half-developable [1]. Curves
family of constant geodesic curvature (in our case - the family of
concentric circles) called Darboux circles. In general, they can be unlocked
(eg screw line on the surface evolvent helicoid).

When p = 0 in equations (25) are bunch of straight geodetics of
cone generating and circles Darboux - its parallels.

Conclusions. The obtained integrals (10) and (11) are a modification
of Clairaut theorem for finding the geodesic lines on the surfaces in
rotation length function of the of the arc according to their own known
equations of meridian. They can build a bunch of geodesic lines from a
given point on the surface in different directions with the same length.
Because of the specific integrals the construction of lines in some areas can
be more difficult. This obstacle can be overcome for the evolvent surface if
known parametric equation of evolvent. For this inverted order is cluster of
straight lines and concentric circles scan, which is corresponded a bunch of
geodesic lines and circles on the surface of Darboux.
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Fig.2. Cone bunch of geodesic lines and Darboux circles on it:
a) evolvent cone; b) cone in axonometry.
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