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Keywords: motion of a particle, rough area, oscillatory 

displacement, differential equations, trajectory, speed. 

 

Formulation of the problem. Heap grain separation into individual 

fractions is carried out with various technological principles [2], in 

particular, due to certain movements of particles on a rough oscillatory 

area. Development of simulation models for oscillatory motion of a particle 

planes necessitates appropriate processing software of computer 

mathematics systems, which is a problem of the research. 

Analysis of recent research. Analytical support for use moving 

trihedral trajectory of particle to describe its movement on the rough 

horizontal area performing parallel movement in space is processed in the 

work [3]. The development of simulation models of a particle is advisable 

to perform in an environment of symbolic mathematics Maple [1]. 

Formulation of Article purposes. To develop for Maple environment 

[1] a simulation model of a particle movement on rough horizontal area, 

which provides rectilinear oscillating motion and with its help explore 

trajectory-kinematic properties according to the following initial 

conditions:1) kinematic parameters of rectilinear oscillation area; 2) initial 

rate of throwing Vo particles; 3)                           
 
 in the 

direction of the plane; 4) external friction coefficient f. 

Main part. In case of a area parallel displacement (its general line is 

parallel to itself) the moving particle in this area is not subjected to Coriolis 

force, which greatly simplifies the formation of a system of differential 

equations of 2nd order law of its motion. In the projections on the axis Ou 

and Ov local coordinate system Ouv law of motion of a particle is written 

the following way: 

 {
          (    ̂)         (    ̂)         (     ̂)

          (    ̂)        (    ̂)         (     ̂)
 (1) 

where: G = [0,0, -1] – direction of gravity Fg = mg in system Oxyz; 
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W = | w | - value acceleration; 

        (   ̂)       (   ̂)- the normal reaction force; 

      and          - gravity and centrifugal force; 

N = [0,0,1] – normal to the area R (u, v) the points of the trajectory r; 

n - the principle normal of particles trajectory r; 

   –the tangent relative trajectory vector ρ. 

Plane equation written in parametric form: 

         [     ], (2) 

Where    [      ],   [      ] – coordinates internal surface 

      . 
There is an unlimited number of parallel movements of a area (2) in 

the space Oxyz, which laws can be viewed by function of vector M [x (t), y 

(t), z (t)]. The simplest of these are: 

1. rectilinear along the axis    -  [      ]; 

2. accelerated along the axis    - [   
   

 
    ], 

3. vibrational along the axis  [          √               ]; 

4. vibrational circular in the area  [                     ], etc. 

Let’s focus on oscillatory movement of the area along the axis Ox, 

which is implemented with a crank mechanism: 

   [          √               ] ,   (3) 

where:      - the angular velocity of the crank; 

     - according to the crank and connecting rod length (Figure 1, A). 

The developed hardware for symbolic mathematics Maple 

environment [1] enables to make automatically all analytical 

transformation to formulate the law (1) of a particle and to implementits 

approximate solution. These calculations are fairly cumbersome, so here 

they will be not given, and only the results of computational experiments of 

a particle at different initial conditions will be given. 

If the crank length l = 2, connecting rod length L= 4, initial speed       

Vo = 4 m /c discharge particles, its starting position       0 and 

friction coefficient f = 0.3. First of all , lets conduct a test experiment - take 

the crank angular velocity υ equal υ = 0 (immovable area). Then the 

absolute trajectory      and the relative trajectory      converge along the 

straight lines  (Fig. 1, B)  and the angle of throwing the particle    
                 isn`t important. Similarly, absolute V(t) and 

relative       graphics of speed particles behave , demonstrating evenly 

decreasing to a complete stop in a immovable area.  

 



 

а) 

 

b) 

 

c) 

Fig.1. Motion of the area and the particle moving in a motion area, 

depending on the angle of throwing    

Let`s increase crank angular velocity υ to υ = 1 s
- 1

. According to the 

graphs relative particles velocities Vρ (t) (Fig. 2, d), it can be argued that 

they will stop during the period t≈0.8-2s. Note that the first will stop the 

particle, which is thrown angle wise   = -90 ° - moving towards a 

oscillatory area with  t = 0. The same particle will have the smallest relative 

trajectory length ρ(t) (Figure 2, B). Absolute particles trajectories r (t) 

(Figure 2, a) and absolute velocities graphs V (t) (Fig. 2, c) are built over 

the time until they will be stopped completely. 

 

 

а) 

 

b) 

 

c) 

 

d) 

Fig.2. Absolute and relative particle trajectories and their velocity 

graphs for the angular crank speed υ = 1 s 
- 1

. 

 

Let`s increase the crank angular velocity  υ = 2 s 
- 1

. Graphics of relative 

Vρ (t) velocity particles (Fig. 3 d) show that only particles thrown at an 

angle         stop after period of time t ≈ 1s, and all others will 

perform relative movement in the area. After a period of time t ≈ 3s 

particles motion stabilized - they all carry the same rectilinear oscillatory 

movements, but in different parts of the area. 

 

              

               

       

      

      

        

             

       



 

а) 

 

b) 

 

c) 

 

d) 

Fig. 3. Absolute and relative trajectory particles and their velocity 

graphs for the crank angular speed υ = 2 s 
- 1

. 

Now let particles have different friction coefficients f = 0.01, 0.15, 0.3, 

0.45. If they will be thrown to the perpendicular direction in the oscillatory 

area (     ), their trajectory-kinematic properties are significantly 

different (Figure 4). So the particle with friction f = 0.45 after interval  t ≈ 

2.7 generally stop in the oscillatory area. Moreover, if the friction 

coefficient f is the greater, the particle stabilizes faster its absolute and 

relative trajectory. Particles with a lower friction coefficient   f  have less 

absolute trajectory amplitude. 

 

а) 

 

b) 

 

c) 

 

d) 

Fig. 4. Absolute and relative particle trajectories and their velocity 

graphs depending on the friction coefficient f. 

 

The value of the initial speed Vo of throwing particle affects only 

during stabilization period of movement (Fig. 5). 

 

а) 

 

b) 

 

c) 

 

d) 

Fig. 5. Absolute and relative particle trajectories and their velocities 

depend on the initial velocity Vo. 

        

      

       

       

                

       
       

              

      

     

     



The transition of the particle with initial velocity Vo = 1 m /s to 

straight oscillating trajectory will be after an interval t≈0.6c, and for 

particles with speed Vo = 8 m / s after t≈3s. 

Conclusions. Heap grain separation into individual fractions can be 

carried out only with varying friction particle coefficients or their throwing 

to different directions in the oscillatory area. Initial velocity of particle 

throwing affects only at the stabilization time of the motion. In case of 

certain  relations of  crank angular velocity and the friction particle 

coefficient, it is possible to stop oscillatory area, but it  is unacceptable for 

the process of separation. 
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