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The determining of the non-chaotic trajectory of cargo vibration
on external sling rope in helicopter under the account of the elastic
properties of the cable is examined.
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Formulation of the problem. Transportation of cargo on external
sling rope helicopter has proven its effectiveness in assembly and rescue
operations. Delivery of water to a helicopter fighting forest fires is an
effective method to eliminate them. But uncontrolled swinging load in the
longitudinal-transverse direction can cause an emergency situation. Fight
with vibrations achieved a decrease airspeed or implementation of
horizontal or vertical accelerations of the helicopter, which greatly depends
on the skill of the pilot. [1] Therefore, the actual work will be related to the
study of the traffic load suspension point to quickly extinguish fluctuations.

Analysis of recent research and publications. There are many works
devoted to the dynamics of the movement of foreign helicopter rope
suspension (see. For the thesis [1]). The ultimate goal of such research is to
build hardware that can assist the pilot in case of emergencies. To do this,
compiled and researched various mathematical models describing the
process fluctuations rope suspension. For understanding the physics of the
process and identify the main factors often considered a simplified model
of the phenomenon, which should always check with more accurate models
and field tests. In [2] it is believed that fluctuations rope suspension occurs
in the plane. In models of [1.2] load on the helicopter rope suspension seen
as spherical pendulum floating-point suspension. But an adequate
description of the process must take into account fluctuations and elastic
properties of the rope suspension helicopters.

The wording of article purposes. Nehaotychnoyi develop a method
for determining the trajectory of the cargo on external sling rope helicopter
provided taking into account the elastic properties of the rope.



Main part. As the helicopter rope suspension are increasingly using
modern synthetic materials such as «Kevlar» or «Dyneemay», which far
exceed the strength of steel products and thus much easier. However,
synthetic materials are flexible and this property should be considered in
the calculations. Note that some fiber elongation can reach 1% -3% of the
length rope.
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The scheme oscillatory system (in literature "pendulum trolley") is
shown in Fig. 1 where m1 - mass of the helicopter, m2 - mass of the load, d
- the length of the cable, which is equal stiffness k. In addition, as
generalized coordinates selected: u (t) - horizontal displacement helicopter,
v (1) - the cable angle from the vertical, and w (t) - elastic extension cable.

To study the dynamic characteristics of helicopter external
suspension was prepared and resolved relative to the coordinate system of
generalized Lagrange equations of the second kind. For this used [3]
Lagrangian L = K - P, where the formula for kinetic and potential energy
are:
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The system of Lagrange equations of the second kind is:
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Untie this system will equations numerically [4,5] with Runge-Kutta

with initial conditions u (0) = u0, u” (0) = Du0, v (0) = v0, v’ (0) = DvO
and subject to determine the values of elongation rate DvO rope depending
on other parameters constant circuit. For definiteness choose the setting (all
in arbitrary units): m1 = 6,5 103 - mass of the helicopter; m2 = 103 - bulk
cargo; k = 87104 - stiffness rope; d = 30 - rope length, g = 9,81.
In the process of calculation should take into account the speed DvO
extension cables, which provide value nehaotychnu trajectory of movement
of goods. Will untie the system of equations numerical method of Runge-
Kutta conditions: u0 =0; u0=0; v0 =0,01; v 0 =0; w0 = 30. As a result,
image building close integral curve in phase space {v, Dv, t}, which will
depend on the specific meaning of “control™ option Dv0. At random values
DvO phase space {v, Dv, t} formed "confused" integral curve, the projection
of which on the phase plane {v, Dv} will also be "confusing" phase
trajectories (Fig. 2a) that lead to chaotic motion circuit elements
suspension. If you change the values of "control" option DvO has changed
and the nature of the phase trajectory. When the critical value Dv0 = 0 the
trajectory will change to qualitative level - turn into "a natural™ curve (Fig.
2b). Fig. 3 are derived graphics functions u (t), v (t) and w (t).



Fig. 2. Phase trajectory for:
a) random value DvO; b) the calculated value Dv0 =0
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Fig. 3. The graphics functlons. a) u (t); b) v (t); a) w ()

Thus, in this example, taking into account the importance Dv0O =0 in
the process of solving the Lagrange equations of the second kind allows
calculate approximately generalized coordinates u (t), v (t), and w (t),
which provide movements nehaotychni time load on the suspension .
Ensure this by using Fig. 4, which shows the trajectory of movement of the
center point load.
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Fig. 4. The trajectory of movement of the center point load

Conclusions. Reproduced a way to evaluate fluctuations of external
parameters suspension helicopter. Further studies will be associated with
determining the limits of parameters to ensure the necessary movements
suspension scheme.
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