11

UDC 004.832

TECHNOLOGIES OF INFERENCE IN
SOFTWARE SYSTEMS

Ausheva N.M., Doctor of Technical Sciences,

nataauscheva@gmail.com, ORCID: 0000-0003-0816-2971

Shapovalova S.1., PhD (Engin.),

lanashape@gmail.com, ORCID: 0000-0002-3431-5639

National Technical University of Ukraine Igor Sikorsky Kyiv Polytechnic
Institute (Kyiv, Ukraine)

The target of research is the implementation technology of inference. The
purpose of the article is to determine the main areas of research on automatic
inference, software obtained on their basis, and relevant areas of application.

Inference is a common task that is implemented in application software.
The efficiency of the software systems, in particular, is determined by the
performance of the built-in inference engine. Means of implementing inference
shall provide optimal execution time and interaction with other components, as
well as meet the requirements of the application task. The article highlights the
main areas of improving the software implementation of inference engine and
relevant areas of research: (i) expanding the concept and combining several
paradigms of logic programming (probabilistic logic programming, defeasible
inference, coinductive programming); (ii) reduction of data exchange time
between software components and processing time of large knowledge bases
(improving pattern matching algorithm for implementing rule-based systems,
creating or expanding implementations of inference tools for integration into
distributed software systems, developing new implementations of inference
engines for specialized programming languages and general-purpose
languages); (iii) a combination of conceptually different approaches to
inference (a combination of both approaches to inference on logical and
productive concepts, the integration of inference paradigms and neural network
approach). The combination of software implementations of different concepts,
first of all, inference engines and neural network models, gives new
opportunities to artificial intelligence,

For each area of research, there are presented software tools, as well as
examples of areas of their application in accordance with this concept.

Key words: inference engine, probabilistic logic programming, defeasible
reasoning, rule-based systems, PRISM, ProbLog, XSB Prolog, SWI Prolog,
DeepProbLog.

Statement of problem. The rapid intellectualization of software
determines the need to solve problems of artificial intelligence concurrently with
many other complex resource-intensive tasks, which are characterized by their

mailto:nataauscheva@gmail.com
mailto:LanaShape@gmail.com,
mailto:LanaShape@gmail.com,
mailto:LanaShape@gmail.com,
http://rjida.meijo-u.ac.jp/prism/

12

own computing mechanisms. One of the most popular intellectual tasks is an
inference. The efficiency of the software systems, in particular, is determined by
the performance of the built-in inference engine. Therefore, it is important to
reduce the inference time to values comparable to the time for solving other
current problems in software systems. The first step in solving this problem is to
determine the software tools for inference, which will provide optimal execution
time and interaction, as well as meet the task requirements.

Recent research and publication analysis. Publications, as a rule, provide
software tools, selected either by the specifics of inference or by program
implementation languages. For example, [1, 2] presents software of defeasible
reasoning tools to present and process information of Internet resources and
ontologies (Semantic Web, Ontology Based Data). [3] presents an inference
engine implemented for Erlang functional programming language. Such analysis
is highly specialized. Modern research is conducted in many areas, as well as at
their intersection. Therefore, it is advisable to determine the overall impact of
research on improving existing and creating new software tools for inference
implementation.

Setting article objectives. The objective of the article is to determine the
main lines of research on automatic inference, software obtained on their basis,
and relevant areas of application.

Main part. The basic paradigms of knowledge representation for step-by-
step conclusions based on pre-known and previously proven facts are logical
and productive. For each of these paradigms, appropriate software tools have
been developed: Prolog family programming languages and rule-based tools for
building expert systems. Each software toolkit contains an inference engine and
a resource for information presentation. The software is marked in italics in the
article.

Modern research on improving inference engines is aimed primarily at
expanding the concept and combining several paradigms of logical
programming in software implementations. In this area, we can determine:

M Probabilistic logic programming.

The probabilistic hybrid knowledge bases combine the paradigms of
Logic Programming languages and Description Logics. The development of this
area is carried out both conceptually and by improving the implementation of
software tools for probabilistic logic programming. For example, [4] proposes a
definition approach with a secure representation of descriptive rules for hybrid
knowledge bases with MKNF semantics (Minimal Knowledge with Negation as
Failure).

On the other hand, [5] proposed a new data structure to represent possible
worlds and a method to convert programs for its application. To prove the
effectiveness of the proposed method experimentally, there was implemented a
prototype in the logical programming language XSB Prolog. For comparison,
test problems were also solved in probabilistic logic systems ProbLog
(Probabilistic extension of ProLog) and PITA (Probabilistic Inference with

13

Tabling and Answer subsumption). Another common language of probabilistic
logic programming is PRISM (PRogramming In Statistical Modeling). [6]
presents the transformation of PRISM into ProbLog and back to highlight their
differences.

The implemented PITA algorithm provides probable opportunities for
existing inference systems. For example, PITA is implemented in XSB Prolog.
XSB Prolog includes the Coherent Description Framework (CDF), which
supports the presentation and implementation of complex Semantic Web
ontologies that meet the definitions of the World Wide Web Consortium (W3C).

[7] introduces a modification of PITA to extend SWI Prolog, which
enables to create a web application for probabilistic logic programming.

B Defeasible reasoning.

[8] proves the correctness of defeasible theories compilation, provides the
implementation in Datalog logical programming language. [1] offers a
benchmark and presents the results of testing specialized defeasible reasoning
tools: DeLP, ASPIC +, SPINdle, Flora-2, DEFT. [2] presents a tool to
implement the defeasible reasoning ELDR, which implements the proposed
formalism to present the rules of the program. Computational experiments were
performed for: ELDR, ASPIC +, DEFT, DeLP, DR-DEVICE and Flora-2. Such
tools are used to process existing Big Data set, primarily Semantic Web data.

B Coinductive logic programming [9]

Infinite computations are an example to apply coinductive computations.
Currently, the corresponding functionality is implemented in the logic
programming languages Logtalk, SWI-Prolog, the system of formal semi-
interactive construction of evidence with machine verification Cog. The latter
system is designed to formalize complex proofs of mathematical theorems.
From a programming point of view, Coqg can be used to verify programs. The
correctness of the Coq core has been checked by the Coq system [10].

Another area of research is aimed at reducing the processing time of large
knowledge bases, both local and distributed. An example is
B Improving pattern matching algorithm for rule-based systems.

The Rete algorithm is a basic method of pattern matching. The known
derivatives of Rete are: TREAT and GATOR. However, Rete or its
modifications are mostly used to implement inference engines. Improved Rete I,
Rete Ill, Rete NT were developed by the author of Rete. Each subsequent
implementation increased performance significantly compared to the previous
one.

Research has mainly focused on analyzing the performance of existing
inference engines, for example [1, 11, 12], and extending Rete for special
applications.

The Rete-OO algorithm [13] enables to extend the application of Rete
from first-order inference to defeasible reasoning to be used in the most
common specialized knowledge representation engines: 3-valued logic, classical
certainty factors, fuzzy, many-valued logic and Bayesian networks. [14]

14

proposes an algorithm to match RETE-ADH templates, which is designed for
composite context-aware service architecture.

[15] offers a Rete-ECA algorithm for device control systems. According
to the results of computational experiments conducted using the mouse-tracking
environment, the Rete-ECA algorithm in comparison with Rete reduces the
required computing resources significantly, including execution time.

Production rule systems are widely used in various industries. For
example, the Drools production system cover is used to create Business Rules
Management Systems (BRMS). [16] introduces the use of Venus and RuleWorks
to ensure Rule Modularity and improve inference for the Java-Based Rule
Engine.

B Create or expand implementations of inference tools to integrate into
distributed software systems.

Service-oriented architectures have become standard for distributed
systems. [17] proposes a service-oriented approach for distributed situated
intelligence, according to which inference engines are used as a distributed
service. A prototype of this approach for Smart House is presented on tuProlog.
The service-oriented computing paradigm is widely used, for example, to
transfer applications to the cloud environment, as well as the Internet of Things
(1oT).

B Creation of new implementations of inference engines.

Implementation of inference engines directly in the language of the software
systems provides rapid data exchange. Therefore, such implementations exist for
the most common programming languages. New implementations are being
developed primarily for specialized programming languages. Historically, the
first programming languages, for which inference engines were developed,
were C, Java, Perl, Pyton, Erlang. [3] presents the implementations of inference
engines in the functional programming language Erlang. These implementations
correspond to both concepts of inference: logical - Erlog (ProLOG interpreter in
ERIlang) and rule-based: ERESYE (ERlang Expert SYstem Engine), SERESYE
(Swarm oriented ERlang Expert SYstem Engine) and RUNES II. Also, [3]
proposes the method to implement production model for Erlang on the basis of
its built-in engine of pattern matching.

Studies on the combination of conceptually different approaches to
inference are the most promising.

B [ntegration of both inference paradigms: logical and rule-based.

[18] presents SWISH (SWI-Prolog for SHaring or SWIProlog SHell),
which is a web interface for Prolog that consists of a web server
(implementation on SWI Prolog) and a client web application (implementation
on JavaScript). In addition to the SWISH architecture, two examples of Prolog
extensions are provided: probabilistic logical programming and Logic
Production System.

In addition, modern artificial intelligence is impossible without neural
networks.

15

B [ntegration of inference paradigms and neural network approach.

[19] presents a structure that combines inference engines (reasoning),
probabilistic logic programming, and general-purpose neural networks, and
offers a programming language DeepProbLog that enables to use these engines.

It is the combination of inference engines and neural network models that
provides new possibilities for artificial intelligence, such as explaining the
conclusions of neural networks or reasoning based on facts obtained from the
recognition of external signals.

Conclusions. There have been defined modern researches on inference
implementation which have led to development of new or improvement of
existing inference engines. Relevant software tools have been presented and
examples of areas of their application according to their concept have been
given.

Literature

1. Hecham A., Croitoru M., Bisquert P. A First Order Logic Benchmark for
Defeasible Reasoning Tool Profiling. RuleML+RR, 2018, Luxembourg, P.81-
97. DOI:10.1007/978-3-319-99906-7_6.

2. Hecham, A., Croitoru, M., Bisquert P. On a flexible representation for
defeasible reasoning variants. Proc. of the International Joint Conference on
Autonomous Agents and Multiagent Systems (44AMAS’18), 2018, P. 1123—
1131.

3. IllamoBanosa C.I. ®@opmamizariisi mpencTaBieHHs MPOAYKIIMHUX MpaBui B
Erlang. Mamemamuune ma xomn romepne mooenosanns. Cepis: mexiumi
nayku. 2020. Bun. 21. C.125-139. DOI:10.32626/2308-5916.2020-21.125-
139

4. Alberti M, Lamma E, Riguzzil F., Zese R. A Distribution Semantics for non-
DL-Safe Probabilistic Hybrid Knowledge Bases. Proc. of the Workshop on
Probabilistic Logic Programming (PLP 2017). 2017. CEUR. Vol. 1916, pp.
40-50.

5. Nampally A., Zhang T., Ramakrishnan C. Constraint-Based Inference in
Probabilistic Logic Programs. Theory and Practice of Logic Programming.
2018. 18(3-4), pp. 638-655. doi:10.1017/S1471068418000273

6. Vandenbroucke A., Schrijvers T. From PRISM to ProbLog and Back Again.
Proc. of the Workshop on Probabilistic Logic Programming (PLP 2017).
2017. CEUR. Vol. 1916, pp. 26-40.

7. Riguzzi F., Wielemaker J., Zese R. Probabilistic Inference in SWI-Prolog.
Proc. of the Workshop on Probabilistic Logic Programming (PLP 2018).
2018. CEUR. Vol. 2219, pp. 15-27.

8. Maher, M. Defeasible Reasoning via Datalog. Theory and Practice of Logic
Programming. 2021. pp. 1-43. DOI:10.1017/S1471068421000387

9. Komendantskaya, E., & LI, Y. Productive corecursion in logic

https://www.researchgate.net/deref/http:/dx.doi.org/10.1007/978-3-319-99906-7_6?_sg%5b0%5d=ITDqtC5WLB9fs6mUFWu-RhJDToWEqIJYQWV2SpBbOsg5Fzx08fpoAbLSBBFukFf2nSAPhtPvaGjUkjDkXWZv0LBBNQ.dBvfSKptgjobghr10QsdMj_qukVNbByhQSCOcs8HianQjqRJHRiD_M_9kkvQ01prB8wyK7hh6GBDlJQwpeW56A
https://doi.org/10.32626/2308-5916.2020-21.125-139
https://doi.org/10.32626/2308-5916.2020-21.125-139

16

programming. Theory and Practice of Logic Programming, 2017. 17 (5-6),
pp. 906-923. DOI:10.1017/S147106841700028X

10.Sozeau M, Boulier S., Forster Ya., Tabareau N., Winterhalter T. Coq Coq
Correct! Verification of Type Checking and Erasure for Coq, in Cog. Proc.
ACM Program. Lang. 4, POPL, Article 8 (January 2020), 28 pages.
DOI:10.1145/3371076

11.1TanoBanosa C. 1., Maxapa O. O. BuzHaueHHsi eheKTUBHOCTI MEXaHi3MIB
JoriyHoro BuBeneHHs. CHUCTEeMH yIpaBiiHHA, HaBiramii Ta 3B's3ky. 2020.
Bum. 4 (62). C.81- 87. DOI:10.26906/SUNZ.2020.4.081

12.Shapovalova S. Generation of test bases of rules for the analysis of
productivity of logical inference engine. Innovative Technologies and
Scientific Solutions for Industries. 2020. No. 3(13). P. 88-96.
DOI:10.30837/ITSS1.2020.13.077

13.Sottara D., Mello, P. Proctor, M. A Configurable Rete-OO Engine for
Reasoning with Different Types of Imperfect Information. IEEE Trans. on
Knowledge and Data Engineering. 2010. Vol. 22, No. 11, pp. 1535-1548

14.Kim M., Lee K., KImY., KIimT., Lee Y., Cho S., Lee C.-G. RETE-ADH:
An improvement to RETE for composite context-aware service. Int. Journal
of Distributed Sensor Networks, 2014, Vol. 2014, Article ID 507160, p. 11.
DOI:10.1155/2014/507160

15.Lee R. and Cho S.. Rete-ECA: A Rule-based System for Device Control.
Proceedings of the International Workshop on Artificial Neural Networks
and Intelligent Information Processing. 2014, pp. 95-102. DOI:
10.5220/0005140500950102

16.Proctor M., Fusco M., Vacchi E., Sottara, D. (2019). Rule modularity and
execution control enhancements for a Java-based rule engine. Proc. of IEEE
2nd International Conference on Artificial Intelligence and Knowledge
Engineering, AIKE-2019, pp. 89-96. DOI: 10.1109/AIKE.2019.00023

17.Calegari R., Denti E., Mariani S., Omicini A. Logic programming as a
service. Theory and Practice of Logic Programming, 2018. 18(5-6), pp. 846-
873. DOI:10.1017/S1471068418000364

18. Wielemaker J., Riguzzi F., Kowalski R., Lager T., Sadri F., Calejo M. Using
SWISH to realise interactive web based tutorials for logic based
languages. Theory and Practice of Logic Programming. 2019. 19(2), pp.
229-261. DOI: 10.1017/S1471068418000522

19.Manhaeve R., Dumanci¢ S., Kimmig A., Demeester T, De Raedt L. Neural
probabilistic logic programming in DeepProbLog. Artificial Intelligence.
2021. Vol. 298, 103504. DOI:10.1016/j.artint.2021.103504

https://doi.org/10.30837/ITSSI.2020.13.077
https://doi.org/10.1109/AIKE.2019.00023
http://www.doc.ic.ac.uk/~rak/papers/swish.pdf
http://www.doc.ic.ac.uk/~rak/papers/swish.pdf
http://www.doc.ic.ac.uk/~rak/papers/swish.pdf
https://doi.org/10.1017/S1471068418000522
https://arxiv.org/search/cs?searchtype=author&query=Manhaeve,+R
https://arxiv.org/search/cs?searchtype=author&query=Duman%C4%8Di%C4%87,+S
https://arxiv.org/search/cs?searchtype=author&query=Kimmig,+A
https://arxiv.org/search/cs?searchtype=author&query=Demeester,+T
https://arxiv.org/search/cs?searchtype=author&query=De+Raedt,+L
https://www.sciencedirect.com/science/journal/00043702
https://www.sciencedirect.com/science/journal/00043702/298/supp/C
https://doi.org/10.1016/j.artint.2021.103504

17

TEXHOJIOI'TL PEAJII3AIII JIOTTYHOI'O BUBEJEHHS B
INPOI'PAMHHUX KOMINVIEKCAX

Aymesa H.M., lllannoBanosa C.1.

06 ’ekmom 00CNiONHCeHHA € MeXHON02li peanizayii 102I1YH020 8UBEOEHHL.
Memorwo cmammi € 6U3HAYEHHSI OCHOBHUX HANPAMIE OOCHIOMCeHb 3
ABMOMAMUYHO20 TI02TYHO20 BUBEOEHHS, OMPUMAHUX HA IX OCHOBI NPOCPAMHUX
3acobieé ma 6i0NoGIOHUX obacmell 3aCMocCy8aHHs.

Jloziune eugedents € po3noscro0HCeHoI0 3a0auer0 Wmy4Ho20 IHMeNeKmy,
SKa peanizyemuvcs 8 NPUKIAOHOMY NPOCPAMHOMY 3abe3nedenni. Onepamunicmo
podbomu npocpamHo20 KOMNJIEKCY, 30KpeMd, BUSHAYAEMbCS eqheKmueHicmio
60Y006aH020 MeXAHI3MY N02TYHO20 6UBedeHHs. 3acoou peanizayii 102IUHO20
8UBEOCHHS MAlOMb 3a0e3neyy8amu ONMUMAlIbHULL Yac 6UKOHAHHS | 83AEMOOII 3
IHWUMU KOMROHEHMAMU, a MAKOHC 3A0080NbHAMU BUMO2AM NPUKIAOHOT 3a0ayi.
B cmammi suoxkpemneno ocnogHi eany3i 600CKOHANIEHHSA NPOCPAMHUX peanizayill
MEXAHIZMIB N02IYHO20 BUBCOCHHS. MdA GIONOGIOHI Hanpsmu 0ocnioxcensb: (1)
PO3WUPEHHs. KOHYenyii ma NOEOHAHHA OeKiIbKOX napaouem J102iYH020
npocpamy8anHs (UMOBIpHICHe J02iuHe NPOcSPaAMYBAHHA, He30amHe JI02IYHe
6UBeOeHHS, KOIHOYKmueHe npozpamysants); (W) ckopouenns wacy o00OMIHy
OaHUMU MINHC KOMNOHEHMAMU NPOSPAMHO20 KOMNJIEKCYy ma 4acy oOpoOKu
genuKux 0a3 3HAHb (800CKOHANIEHHS MoOejlell CNiBCMABNeHHs 3 3PA3KOM 8
cucmemax, wo 0azylOmMbcsi HA NPABUNAX, CMBOPEHHA aO0 DPO3UWUDEHHS.
peanizayiii 3acobi8 N02IYHO20 BUBCOeHHA Ol I[Hme2payii 8 po3nooileHi
NPOSPAMHI cucmemu, po3poOKy HOBUX peanizayil MeXaHizmié JN02IYHO20
8UBEOCHHsL O CNeyianizo8aHux MO8 NpOcPAMYBAHHA MA MO8 3a2albHO20
npusnavennsy); (1) noconanns KoHYyenmyaibHo pizHUX NiOXo0ie 00 JIO2IUHO20
susedennsi (noconanmsi 060x nioxo00i6 00 BUBCOCHHS 34 JIO2IUHOW Md
NPOOYKYIUHOW KOHYENYiamu, iHmespayiro napaouem J102i4H020 BUBCOeHHS md
Helipomepedice8o2o nioxody). Came NOEOHAHH NPOSPAMHUX Deanizayill pi3HUX
KOHYenyiu, Hacamnepeo, MexaHizmie QopMySaHHs JNO2IYHUX BUCHOBKIE ma
Hetipomepedicesux mooenell, Ha0ae HO8L MONCIUBOCI WMYYHOMY [HMeNeKmY.

Jna koocnoco manpamy 00Cniodxcenb NpeocmasieHo NPoSpamHi 3acoou,
MAKONC HABEOEHO NPUKAAOU 2ally3ell iX 3aCMOCYB8aHHS 8I0NOBIOHO 3A3HAYEHI
KOHYenyii.

Knrouosi cnosa: mexanizmu n02iuno20 6uedenHs, UMOBIPHICHe N02IuHe

npocpamyeaHrH, Hez0amue J1021uHe 6M6€0€HH}Z, cucmemu, uwo 6a3yIOI’HbC}Z HA
npasunax, PRISM, ProbLog, XSB Prolog, SWI Prolog, DeepProbLog.

http://rjida.meijo-u.ac.jp/prism/

18

TEXHOJIOI'MM PEAJINBAIIUU JIOTHUYECKOI'O BBIBO/IA B
ITPOT'PAMMHBLIX KOMINVIEKCAX

Aymesa H.H., IllannoBanosa C.1.

Obvekm ucciedo8anus - MexHONI0SUU Peatu3ayull 102U4ecKo20 6bl800d.
Llenv cmamvu - onpeodenenue OCHOBHBIX HANPABICHUU UCCIE008AHULL
ABMOMAMUYECKO20 N02UYECKO20 8bl800d, NOJYYEHHBbIX HA UX OCHOB8e
NPOCPAMMHBIX CPEOCME U COOMBEMCMBYIOWUX 001acmell NPUMEHEHUS.
Jlocuueckuii 6v1800 A6AEMC pACNPOCMPAHEHHOU 3adadeli UCKYCCMBEHHO20
UHMeIeKma, —peanu3yemolt 8 NPUKIAOHOM NPOSPAMMHOM — obecnedeHulu.
Onepamugnocms ~ pabomsl NPOSPAMMHO20 — KOMNJIEKCA ONpeoesemcs
ahhexmueHoCcmvio 8CMPOEHHO20 MeXanuma jlocuiecko2o 8vieooa. Cpedcmea
peanuzayuu 102ULecKoeo 8bl800a OOINCHb 00eCneuusams ONMUMAIbHOE 8DEMS
BLINOJIHEHUS U B3AUMOOCUCMBUL C OpyeuMU KOMHOHEHMAMU, d MAaKdice
V0081emeopsims mped08aHUsAM NPUKIAOHOU 3a0ayu. 8 Cmamve 6blOe/leHbl
OCHOBHblE — 00AACMU YCOBEPUICHCBOBAHUSL NPOSPAMMHBIX — Peanu3ayul
MEXAHUZMOB JIOSUHECKO20 8bl800d U COOMBEMCMEYIoWUe HANPAGLeHUs]
uccredosanuii: (i) pacuuperue KOHYenyuu U covemanue HecKOJIbKUX napaouem
JI02UHeCK020 npocpaAMMUPOBAHUSL (6eposimuocmmoe Jloeudeckoe
npozpammuposanue, ocnopumvlii 6vi600 - defeasible inference, kounoyxmusnoe
npocpammuposarnue); (ii) coxpawjeHue 8pemeHu 0OMeHA OAHHbIMU MEHCOY
KOMNOHEHMAMU NPOSPAMMHO20 KOMNJIEKCa U 8peMeHUu 0opabomku 6orvuux 6a3
3HaHuU (ycogepuiencmeosanue Mmooenell CONOCmAasieHus ¢ 00pasyom 6
cucmemax, OA3UPYIOWUXCA HA NPABUAAX, CO30aHUe UIU PACUUpeHue
peanuzayutl cpeocms 102u4eck020 8bl800a 0/ UHMeSpayuu 8 pacnpeoeiieHHble
NpoCpaMMHble CUCMEMbl, paA3pabomKa HOBLIX pealu3ayuii. MexaHuMos
JI02U4eCcK020 8bl800A OISl CNeYUATUIUPOBAHHBIX SA3bIKOE NPOCPAMMUPOGAHUS U
A3bIKO8 00wWe2o0 Haznauenus), (iii) couemanue KOHYENMYAalbHO PASHBIX
n00X0008 K JN02UYECKOMY B8bl800Y (couemaHue 6bl80008 NO JOSUYECKOU U
NPOOYKYUOHHOU KOHYENYUIM, UHMezpayus napaouem J1o2UiecKkozo 6uleood U
Helipocemego2o nooxooa). Camo cowemanue NPOSPAMMHLIX —PearU3AyULL
PA3IUYHBIX KOHYERYUL, Npexcoe 8cec0 MeXanusmos opMupo8anuss 102UIecKux
86160008 U HeUpocemesvlx Mooeell, npedoCmasisienm HOB8ble B03MONCHOCHIU
UCKYCCMBEHHOM) UHMENIEeKM).

s kasicooeo HanpasieHus ucciedo8anull NPeoCmasienbl nPocPamMmHble
cpeocmea, maxaice NpuBeoeHvl npumepvl Ompacieli Ux NpPuUMeHeHust CO2lNACHO
VKA3AHHOU KOHYenyuu.

Knrouesvie cnosa: mexanuzmvl 102UHECK020 6b1600d, BGEPOIMHOCHHOE
Jlo2u4ecKkoe Npocpammuposanue, OCNOPUMbIU JOSUHECKULl 8blBOO, CUCTNEMbL,
baszupyiowuecss na npasunax, PRISM, ProbLog, XSB Prolog, SWI Prolog,
DeepProbLog.

http://rjida.meijo-u.ac.jp/prism/

19

References

. Hecham, A., Croitoru. M., & Bisquert, P. (2018). A First Order Logic
Benchmark for Defeasible Reasoning Tool Profiling. RuleML+RR,
Luxembourg, 81-97. DOI:10.1007/978-3-319-99906-7_6.

. Hecham, A., Croitoru, M., & Bisquert, P. (2018). On a flexible representation
for defeasible reasoning variants. Proc. of the International Joint Conference
on Autonomous Agents and Multiagent Systems (44MAS’18), 1123-1131.

. Shapovalova, S. (2020). Formalization of the Rules of Inference in Erlang.
Mathematical and computer modelling. Series: Technical sciences, 21, 125-
139. DOI:10.32626/2308-5916.2020-21.125-139 [in Ukrainian]

. Alberti, M, Lamma, E, Riguzzi, F., & Zese, R. (2017). A Distribution
Semantics for non-DL-Safe Probabilistic Hybrid Knowledge Bases. Proc. of
the Workshop on Probabilistic Logic Programming (PLP 2017), CEUR, Vol.
1916, 40-50.

. Nampally, A., Zhang, T., & Ramakrishnan C. (2018). Constraint-Based
Inference in Probabilistic Logic Programs. Theory and Practice of Logic
Programming, 18(3-4), 638-655. doi:10.1017/S1471068418000273

. Vandenbroucke, A., & Schrijvers, T. (2017). From PRISM to ProbLog and
Back Again. Proc. of the Workshop on Probabilistic Logic Programming
(PLP 2017), CEUR, Vol. 1916, 26-40.

. Riguzzi, F., Wielemaker, J., & Zese R. (2018). Probabilistic Inference in
SWI-Prolog. Proc. of the Workshop on Probabilistic Logic Programming
(PLP 2018), CEUR, Vol. 2219, 15-27.

. Maher, M. (2021). Defeasible Reasoning via Datalog—. Theory and Practice
of Logic Programming, 1-43. DOI:10.1017/S1471068421000387

. Komendantskaya, E., & LI, Y. (2017). Productive corecursion in logic
programming. Theory and Practice of Logic Programming, 17(5-6), 906-923.
DOI:10.1017/S147106841700028X

10.Sozeau, M, Boulier, S., Forster, Ya., Tabareau, N., & Winterhalter, T.

(2020). Coq Coq Correct! Verification of Type Checking and Erasure for
Coq, in Coqg. Proc. ACM Program. Lang. 4, POPL, Article 8 (January 2020),
28 pages. DOI:10.1145/3371076

11.Shapovalova, S., Mazhara, O. (2020). Measuring efficiency of inference

engines. Control, Navigation and Communication Systems, 4 (62), 81-87 [in
Ukrainian]

12.Shapovalova, S. (2020). Generation of test bases of rules for the analysis of

productivity of logical inference engine. Innovative Technologies and
Scientific Solutions for Industries, 3(13), 88-96.
DOI:10.30837/1TSSI.2020.13.077

https://www.researchgate.net/deref/http:/dx.doi.org/10.1007/978-3-319-99906-7_6?_sg%5b0%5d=ITDqtC5WLB9fs6mUFWu-RhJDToWEqIJYQWV2SpBbOsg5Fzx08fpoAbLSBBFukFf2nSAPhtPvaGjUkjDkXWZv0LBBNQ.dBvfSKptgjobghr10QsdMj_qukVNbByhQSCOcs8HianQjqRJHRiD_M_9kkvQ01prB8wyK7hh6GBDlJQwpeW56A
http://mcm-tech.kpnu.edu.ua/article/view/216500
http://mcm-tech.kpnu.edu.ua/index
https://doi.org/10.32626/2308-5916.2020-21.125-139
https://doi.org/10.30837/ITSSI.2020.13.077

20

13.Sottara, D., Mello, P. & Proctor, M. (2010). A Configurable Rete-OO Engine
for Reasoning with Different Types of Imperfect Information. IEEE Trans.
on Knowledge and Data Engineering. 22, 11, 1535-1548

14.Kim, M., Lee, K., Kim, Y., Kim, T., Lee, Y., Cho, S., & Lee, C.-G. (2014).
RETE-ADH: An improvement to RETE for composite context-aware service.
Int. Journal of Distributed Sensor Networks, 2014, Article ID 507160, p.11.
DOI:10.1155/2014/507160

15.Lee, R. & Cho, S. (2014). Rete-ECA: A Rule-based System for Device
Control. Proceedings of the International Workshop on Artificial Neural
Networks and Intelligent Information Processing, pp. 95-102. DOI:
10.5220/0005140500950102

16.Proctor, M., Fusco, M., Vacchi, E., & Sottara, D. (2019). Rule modularity
and execution control enhancements for a Java-based rule engine.
Proceedings of IEEE 2nd International Conference on Artificial Intelligence
and Knowledge Engineering (AIKE-2019), 89-96.
DOI: 10.1109/AIKE.2019.00023

17.Calegari, R., Denti, E., Mariani, S., & Omicini, (2018). A. Logic
programming as a service. Theory and Practice of Logic
Programming, 18(5-6), 846-873. DOI:10.1017/S1471068418000364

18.Wielemaker, J., Riguzzi, F., Kowalski, R., Lager, T., Sadri, F., & Calejo, M.
(2019). Using SWISH to realise interactive web based tutorials for logic
based languages. Theory and Practice of Logic Programming. 19(2), 229-
261. DOI: 10.1017/S1471068418000522

19.Manhaeve, R., Dumanci¢, S., Kimmig, A., Demeester, T, & De Raedt, L.
(2021). Neural probabilistic logic programming in DeepProbLog. Artificial
Intelligence. 298, 103504. DOI:10.1016/j.artint.2021.103504

https://doi.org/10.1109/AIKE.2019.00023
http://www.doc.ic.ac.uk/~rak/papers/swish.pdf
http://www.doc.ic.ac.uk/~rak/papers/swish.pdf
https://doi.org/10.1017/S1471068418000522
https://arxiv.org/search/cs?searchtype=author&query=Manhaeve,+R
https://arxiv.org/search/cs?searchtype=author&query=Duman%C4%8Di%C4%87,+S
https://arxiv.org/search/cs?searchtype=author&query=Kimmig,+A
https://arxiv.org/search/cs?searchtype=author&query=Demeester,+T
https://arxiv.org/search/cs?searchtype=author&query=De+Raedt,+L
https://www.sciencedirect.com/science/journal/00043702
https://www.sciencedirect.com/science/journal/00043702
https://www.sciencedirect.com/science/journal/00043702/298/supp/C
https://doi.org/10.1016/j.artint.2021.103504

