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The paper describes the prospects of using a specific type of Gaussian
polynomial function for the reconstruction of a continuous and regular surface by
its point cloud.

Restoring the curves and surfaces behind their point clouds is an important
sub-problem for 3D scanning-based modeling. Also, a similar problem arises when
converting surfaces from boundary representation to triangle mesh. For the latter,
it is critically important to restore the orientation of the surface if the initial data
does not contain such information, or contains false information.

The Gaussian interpolation polynomial certainly goes to zero, while the
argument of the function goes to plus- and minus-infinity at any configuration of
the point cloud. Thus, if in a 3-dimensional space, we define the point cloud surface
as an isosurface of some predefined positive value, for example, 1, and consider the
surface oriented in the direction of isolines with a lower value, the surface
constructed by a generalized interpolating Gaussian polynomial should always
appear to be oriented correctly, i.e. the space bounded by the surface will always
be closed, and the closure will contain the inner side of it. Moreover, the isosurface
itself will be continuous and regular since the Gaussian functions that constitute
the polynomial are infinitely differentiable.

Despite these useful properties, the interpolation Gaussian polynomial has
not been used in point cloud-based curve restoration. The purpose of this research
Is to assess the practical applicability of Gaussian interpolation in the context of
restoring curves and surfaces by their point clouds.

The challenge of such application lies not in obtaining the correct
differential properties of the resulting curves and surfaces but in establishing their
topological properties, namely connectivity, and their resulting shapes. The
resulting shape of the curve or surface obtained by Gaussian interpolation should
somehow correspond to the implied surface or curve behind the point cloud.

Keywords: interpolation, Gaussian polynomial, regular surfaces, point
cloud, mathematical optimization, geometrical modeling, modeling.
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Formulation of the problem. Let there be a point cloud consisting of M

N-dimensional points P;, i = 1..M. Each point represents a specific point of a
surface we want to restore. We presume that the curve in question is continuous
and regular.

We want to define an N-ar function, namely a Gaussian polynomial, that
will be interpolating for some predefined positive value C defined in each point
of the point cloud. The isosurface of this polynomial will be the target curve
we’re trying to restore.

Mathematically, the curve is guaranteed to be regular, however, we don’t
know whether its shape of connectivity is applicable to real-world applications.
That’s what we’re establishing with a series of computational experiments.

Analysis of recent research and publications. The algorithm for
constructing the unary Gaussian interpolation function was introduced in [1]. In
Implicit Curves And Surfaces Modeling With Pseudogaussian Interpolation [2]
we have shown that the pseudo-Gaussian interpolation could be used for implicit
surfaces and curves representation. And in Closed Smooth Curves Construction
With The Gaussian Interpolating Polynomial [3] we have shown that Gaussian
interpolation could be used for building continuous, although not regular, curves
with predefined degrees of continuity.

Also, surface reconstruction from a cloud of points in the form of a
Gaussian sum, which is not, strictly speaking, an interpolating function, is
already a popular approach. Thus, in the work of [4] Spherical Gaussian Point
Cloud Representation is used not only to restore the shape of an object from the
point cloud but also to simplify its registration for other similar objects. Prior to
that, Spherical Gaussians were used to calculate illumination when rendering
[5]. The use of approximating spherical Gaussians was first proposed in 2006

[6].

Formulating the purposes of the article. The purpose of the study is to
establish whether restoring surfaces from point clouds by means of Gaussian
interpolation is practically applicable. For this, a series of experiments are
conducted, and the conditions in which the shape and connectivity of the
resulting surface in 3D or curve in 2D are satisfactory are analyzed.

Main part. The study of Gaussian polynomial interpolation in the context
of surface modeling in 3D is best to begin with modeling curves in in 2D. So,
for example, if the reconstruction of a curve by its point cloud already shows the
fundamental limitations of the method, or its computational problems, extending
the method by adding another dimension should already seem impractical.

So, for practical consideration, we narrowed the problem of surface
restoration down to constructing a smooth continuous correctly oriented curve
that passes through a finite set of points.

For experimentation, we choose specifically a set of points obtained by
randomizing the position of uniformly distributed points of a circle with radius
1. Randomization is carried out in a square with a side equal to a third of the
length of the sector between two points in radians, with a normal random
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distribution.

The reconstructed curve is expected to generally follow the contour of the
randomized circle from which it was constructed, with apparent deviations
within the intervals of randomization. (Figure 2)
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Figure 2. An example of an implicit curve built upon a test point set

To simplify the illustrative material, hereinafter we show the same set of
12 points, although in the course of the study, point clouds with different
numbers of points and different randomization schemes were considered.

The construction of a correctly oriented implicit curve by an interpolating
Gaussian polynomial.

An N-ar Gaussian polynomial G that interpolates a set of M N-
dimensional points P;, i = 1..M has this formula:

M
G(z) = 3 yeolePl
i=1

Here P; — interpolation points (i = 1..M), a; — positive coefficients in the
argument of the exponent, y; — polynomial coefficients.

For any specific interpolating polynomial, the coefficients could be
obtained by solving the system of equations:
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The system becomes linear if we only solve it for y; with already
predefined «; Obtaining the coefficients «; that improve the quality of
interpolation in one sense or another is, however, an open problem.

If, for instance, we assume that a; = 1 for all i, then the curve generated on
a predefined point cloud does not resemble a circle, but instead breaks up into
several thin islands (Figure 3).
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Figure 3. An example of a curve built with an unmotivated choice of a;

In the paper [smooth gauss], a proposition to calculate a; coefficients by
optimizing a predetermined target function was suggested. It is expected that by
choosing a target function of one kind or another, we will have control over the
coefficients of the interpolation polynomial and, accordingly, the shape of the
implicit curve that we are building.

In this work, we investigated the following target functions.
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1. The total square error in the control points given by the same sample of
points in the circle with the same randomization, but shifted by half the angle of
the unit segment. It was expected that the addition of control points would allow
for the selection of coefficients that would make the outline more similar to the
outline of a circle, but expectations were not met. (Figure 4)
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Figure 4. An example of a; optimization by fitting the control points

None of the variants of point cloud randomization with the specified
target function resulted in a single-linked curve. All the experiments led to a set
of disjointed islands.

2. The other target function in question was the total square curvature of
the curve at the interpolation points. Similar to the previous assumption, it was
expected that minimizing the square of curvature at points would achieve a more
circle-like contour — a figure with the minimum possible integral of the square
of curvature. However, these expectations also did not come true (Figure 5).

This time, the curve could have been constructed single-linked, however,
the shape of the implicit interpolating curve is still far from the circle, from
which the randomized points have been collected. Also, various randomization
options for the point cloud were evaluated, but none of them led to a satisfactory
shape of the interpolating implicit curve.
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Figure 5. An example of a; optimization based on the minimized curvature

3. The last target function in scrutiny was the square of the difference
between the value of the polynomial and the actual equation of the circle in the
implicit form on a predetermined dot grid of 16x16 points uniformly defined at
[-1.5, 1.5]%[-1.5, 1.5].

Minimization of this target function actually brought the desired result
(Figure 6).

This proves that curve and surface reconstruction from their respective
point clouds with an interpolating Gaussian polynomial is possible. However,
the very need for an implicit equation for an object similar to the one we should
have reconstructed ourselves from the point cloud already negates the value of
the method. If the orientation of the surface can be recovered from the Gaussian
polynomial, then it could also be recovered from the implicit equation we would
use to compute the polynomial in question.

Also, calculating the target function on a dot grid is a computationally
demanding task. For instance, computing the a; coefficients using a classical
optimization method for the curve in Figure 6, took about 50 seconds on a
computer with an Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz processor.
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Figure 6. The implicit curve with its difference from the circle equation
minimized

Conclusions. Using an interpolating Gaussian polynomial to reconstruct
curves and surfaces from their point clouds is possible but the algorithm we fund
that does so requires some sort of implicit representation of the goal function
preconception. This makes its practical application unfeasible. The algorithm is
also computationally demanding even in the 2D case, and even for a small
amount of points in a cloud.

However, the very possibility of surface reconstruction, shown by our
approach seems promising. We already know that approximating Gaussian
polynomials works well in the context of point cloud surface restoration, and
now we have demonstrated that the interpolating approach is also plausible.
Perhaps, if some hybrid method could be both exact at some given points and
approximating for the rest of the point cloud, it could also achieve
computational efficiency and model independence our method lacks.
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IHOBYJIOBA 3AMKHEHHUX I''TAIKUX KPUBUX
IHTEPIIOJIAINIMHUM ITOJITHOMOM I'AYCA

Tapnascbkuii 0. A., Muxaiinosa [.1O., Kanentok O.C.

YV cmammi posensodaromscsi nepcnekmusu GUKOPUCMAHHS CReYUpiuHo20
Mmuny 2aycogoi NONIHOMIANbHOI (DYHKYII 01 pPeKOHCMPYKYIl HenepepeHoi ma
PEVIIAPHOL NOGEPXHI 1T XMAPOI MOYOK.

Bionoenenns kpusux i nosepxoHnv 3a iX XMapow mMOYOK € BaAHCIUBONO
nionpoonemoro 0lisl 8CMAHOBIEHHS MEXHIYHUX NOBEPXOHb 3a ix ¢hopmoro 3a
oonomozoro  3D-ckamyeanna. Taxoxc awnanoziuna npobrema UHUKAE NpU
nepemeopenti NOBEpXonb 3 SPAHUYHO20 NPeOCMABNIeHHs 8 MPUKYMHY CimKy. /[
OCMAHHIX KPUMUYHO BANCIUBO BIOHOBUMU OPIEHMAYII0 NOBEPXHI, AKWO BUXIOHI
O0ani He Micmsams maxoi ingopmayii, abo Micmsams HeNPagoOUsi BIOOMOCHIL.

Tayciecokuti inmepnoaayiiHuli MHO2OUIeH NPAMYE tioe 00 HYs, KOIU U020
apeymenm npsamye 00 NaC- i MiHYC-HeCKIHYeHHOCmI npu 0yO0b-Kitl KoHicypayii
IHmepnonAYiuHUX mo4oxK. Takum YuHOM, AKWO 6 MPUSUMIDHOM)Y NPOCMOPL MU
BUZHAYAEMO NOBEPXHIO 00NAKA MOYOK, SK I30N0BEPXHIO IMNIIYUMHOI PYHKYIT 3
NO3UMUBHUM — 3HAYEHHAM, Hanpukiao, 1, [ esaxcamumemo 308HIUHBOIO
OpIiEHMAayiro NOBePxXHi NPOCMIP, 8 AKOMY 3HAYEHHS IMAAIYUMHOT (PYHKYIT MeHui 3
OOUHUYIO, MO  NOGEPXHA, NOOYOOBAHA  Y3A2ANbHEHUM  IHMEPNOIAYIIHUM
MmHozounenom Iayca, 3aeaxcou 6yoe opienmosanoro npasuivHo. Toomo npocmip,
0OMediCeHUll NOBEPXHETO, 3a824cOU OYyOe 3aMKHEHUM I ye 3aMUKanHs Oyoe micmumu
BHYmMPIUWHIO CMOpoHy nogepxti. Ilpu momy, cama izonosepxus 6yode HenepepeHoIo
3a 6CiMa 4acmMKOBUMU NOXIOHUMU a 3HAYUMb 1 pezyisapHoro, addce I aycianu, 3
AKUX CKIAOAEMBCS NONHOM, OUpepeHYyI0I0mMbCsl HeCKIHYEHHO.
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Heszsaorcarouu Ha yi xopucHi enacmuocmi, came IHMEPNOJAYIUHUL
MmHozounen Iayca domenep npu 8iOHOGIEHHI KPUBUX HA OCHOBL XMAapU MOUYOK He
suxopucmosygascs. Omoice Memorw 0aH020 OOCHIONCEHHs € OYIHKA NePCneKmus
NPAKMU4Ho20 3acmocyeanHs inmepnonayii layca 6 kowmexcmi 8iOHOBNEHHS.
KPUBUX | NOBEPXOHb 3A IX XMAPAMU MOYOK.

AOorce mema makoz2o 3acmocy8amHHs NOJA2AE He CMINbKU 6 OMPUMAHHI
NPAsUIbHUX OUepeHyianbHUX 61ACMUBOCTEN PEe3YIbIMYIOUUX KPUBUX | HOBEPXOHb,
a Yy 6CMAHOGNEHHI IX MONONOCIYHUX 6lacmusocmel, a came 38's13Hocmi, |
pesynomyouux gopm. DPopma Kpueoi abo nNoeepxHi, OMPUMAHA UIAXOM
inmepnonayii layca, nosuHHa nNesHUM UYUHOM BiOnogioamu nepeodayysaHiil
NOBEpXHi OO KPUSIll, sIKA NPecmasiend XMapoo moyok.

Kniouosi cnosa: inmepnonayis, mmoeounen Ilayca, pezynsapui nogepxui,
xmapa mo4oK, MaAmeMamuyHad ONnMmuMi3ayis, 2eoMempuiyHe MOOen08aHHS,
MOOENOBAHHL.
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